Skip to main content
Log in

Prediction of Brittle Failure for TBM Tunnels in Anisotropic Rock: A Case Study from Northern Norway

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Prediction of spalling and rock burst is especially important for hard rock TBM tunneling, because failure can have larger impact than in a drill and blast tunnel and ultimately threaten excavation feasibility. The majority of research on brittle failure has focused on rock types with isotropic behavior. This paper gives a review of existing theory and its application before a 3.5-m-diameter TBM tunnel in foliated granitic gneiss is used as a case to study brittle failure characteristics of anisotropic rock. Important aspects that should be considered in order to predict brittle failure in anisotropic rock are highlighted. Foliation is responsible for considerable strength anisotropy and is believed to influence the preferred side of v-shaped notch development in the investigated tunnel. Prediction methods such as the semi-empirical criterion, the HoekBrown brittle parameters, and the non-linear damage initiation and spalling limit method give reliable results; but only as long as the angle between compression axis and foliation in uniaxial compressive tests is relevant, dependent on the relation between tunnel trend/plunge, strike/dip of foliation, and tunnel boundary stresses. It is further demonstrated that local in situ stress variations, for example, due to the presence of discontinuities, can have profound impact on failure predictions. Other carefully documented case studies into the brittle failure nature of rock, in particular anisotropic rock, are encouraged in order to expand the existing and relatively small database. This will be valuable for future TBM planning and construction stages in highly stressed brittle anisotropic rock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Amadei B (1996) Importance of anisotropy when estimating and measuring in situ stresses in rock. Int J Rock Mech Min 33(3):293–325

    Article  Google Scholar 

  • Andersson J, Ahokas H, Hudson JA et al (2007) Olkiluoto site description 2006. Report POSIVA 2007–03. http://curie.ornl.gov/system/files/documents/SEA/POSIVA-07-03_Olkiluoto_Site_Description.pdf

  • Andresen A, Tull JF (1985) Age and tectonic setting of the Tysfjord gneiss granite, Efjord, North Norway. Nor Geol Tidsskr 66:69–80

    Google Scholar 

  • Bewick RP (2008) Effects of anisotropic rock mass characteristics on excavation stability. M.Sc. thesis, Laurentian University Sudbury, Ontario, Canada. doi:10.13140/RG.2.1.3658.6405

  • Bewick RP, Kaiser PK (2009) Influence of rock mass anisotropy on tunnel stability. In: Proceedings of the 3rd CANUS rock mechanics symposium, Toronto, May 2009. http://www.geogroup.utoronto.ca/wp-content/uploads/rockeng09/Session4/3995%20PAPER.pdf

  • Christiansson R, Hudson JA (2003) ISRM suggested methods for rock stress estimation—part 4: quality control of rock stress estimation. Int J Rock Mech Min 40:1021–1025. doi:10.1016/j.ijrmms.2003.07.004

    Article  Google Scholar 

  • Diederichs MS (2003) Rock fracture and collapse under low confinement conditions. Rock Mech Rock Eng 36(5):339–381. doi:10.1007/s00603-003-0015-y

    Article  Google Scholar 

  • Diederichs MS (2007) The 2003 Canadian Geotechnical Colloquium: mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunnelling. Can Geotech J 44:1082–1116

    Article  Google Scholar 

  • Diederichs MS, Kaiser PK, Eberhardt E (2004) Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation. Int J Rock Mech Min 41:785–812. doi:10.1016/j.ijrmms.2004.02.003

    Article  Google Scholar 

  • Eberhardt E (2001) Numerical modelling of three-dimension stress rotation ahead of an advancing tunnel face. Int J Rock Mech Min 38:499–518

    Article  Google Scholar 

  • Everitt RA, Lajtai EZ (2004) The influence of rock fabric on excavation damage in the Lac du Bonnett granite. Int J Rock Mech Min 41:1277–1303. doi:10.1016/j.ijrmms.2004.09.013

    Article  Google Scholar 

  • Fairhurst CE, Hudson JA (1999) Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression. Int J Rock Mech Min 36:279–289

    Article  Google Scholar 

  • Grandori R, Bieniawski ZT, Vizzino D, Lizzadro L, Romualdi P, Busiollo A (2011) Hard rock extreme conditions in the first 10 km of the TBM driven Brenner exploratory tunnel. In: Proceedings of the rapid excavation and tunneling conference (RETC), San Francisco, 19–22 June 2011, pp 667–685. Society for mining metallurgy and exploration, Inc., Englewood, Colorado. ISBN: 978-0-87335-343-4

  • Haimson BC, Cornet FH (2003) ISRM suggested methods for rock stress estimation—part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF). Int J Rock Mech Min 40:1011–1020. doi:10.1016/j.ijrmms.2003.08.002

    Article  Google Scholar 

  • Hajiabdolmajid V, Kaiser PK, Martin CD (2002) Modelling brittle failure of rock. Int J Rock Mech Min 39:731–741

    Article  Google Scholar 

  • Hajiabdolmajid V, Kaiser PK, Martin CD (2003) Mobilised strength components in brittle failure of rock. Geotechnique 53(3):327–336

    Article  Google Scholar 

  • Hakala M, Sjöberg J (2006) A Methodology for interpretation of overcoring stress measurements in anisotropic rock. POSIVA working report 99. http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/43/063/43063250.pdf

  • Hanssen TH (1997) Investigation of some rock stress measuring techniques and the stress field in Norway. Ph.D. thesis, Norwegian University of Science and Technology, Trondheim, Norway. ISSN: 0802-3271

  • Hanssen TH, Myrvang A (1986) Rock stresses and rock stress effects in the Kobbelv area, northern Norway. In: Proceedings of the international symposium on rock stress and rock stress measurements, pp 625–634. Stockholm

  • Hudson JA, Cornet FH, Christiansson R (2003) ISRM suggested methods for rock stress estimation—part 1: strategy for rock stress estimation. Int J Rock Mech Min 40:991–998. doi:10.1016/j.ijrmms.2003.07.011

    Article  Google Scholar 

  • ISRM (1979) Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. Int J Rock Mech Min Sci Geomech Abs 16(2):135–140

    Google Scholar 

  • Kaiser PK, McCreath D, Tannant D (1995) Canadian rock-burst support handbook. Geomechanics Research Centre and CAMIRO, Sudbury

    Google Scholar 

  • Kildemo GA (1985) A rock mechanical investigation of the Kobbskaret tunnel. M.Sc. thesis, Norwegian University of Science and Technology, Trondheim, Norway (in Norwegian)

  • Lajtai EZ (1974) Brittle fracture in compression. Int J Fract Mech 10:525–536

    Article  Google Scholar 

  • Martin CD (1993) The strength of Lac du Bonnet granite around underground openings. Ph.D. thesis, University of Manitoba, Winnipeg, Manitoba, Canada

  • Martin CD (1997) The effect of cohesion loss and stress path on brittle rock strength. Can Geotech J 34:698–725

    Article  Google Scholar 

  • Martin CD, Chandler NA (1994) The progressive fracture of lac du Bonnet granite. Int J Rock Mech Min 31(6):643–659

    Article  Google Scholar 

  • Martin CD, Christiansson R (2009) Estimating the potential for spalling around a deep nuclear waste repository in crystalline rock. Int J Rock Mech Min 46:219–228. doi:10.1016/j.ijrmms.2008.03.001

    Article  Google Scholar 

  • Martin CD, Martino JB, Dzik EJ (1994) Comparison of borehole breakouts from laboratory and field tests. In: Proceedings of the SPE/ISRM rock mechanics in petroleum engineering, pp 183–190. Delft, The Netherlands, 29–31 August 1994. Balkema, Rotterdam

  • Martin CD, Read RS, Martino JB (1997) Observations of brittle failure around a circular test tunnel. Int J Rock Mech Min 34(7):1065–1073

    Article  Google Scholar 

  • Martin CD, Kaiser PK, McCreath DR (1999) Hoek-Brown parameters for predicting the depth of brittle failure around tunnels. Can Geotech J 36:136–151

    Article  Google Scholar 

  • Myrvang A, Blindheim OT, Johansen ED (1998) Rock stress problems in bored tunnels. In: Bruland A et al (ed) Norwegian TBM tunneling—30 years of experience with TBMs in Norwegian tunneling (publication no. 11), Norwegian soil and rock engineering association, Oslo, pp 71–78. ISBN: 82-991952-1-7. http://tunnel.no/publikasjoner/engelske-publikasjoner/

  • NGU (2014a) Geological map of Norway. Norges geologiske undersøkelse. http://www.ngu.no/upload/Kart%20og%20data/berggrunnskart/bergarter_Norge_uSvalbard.jpg. Accessed 4 Dec 2014

  • NGU (2014b) Online geological map of Linnajavri. NGU online database. Origin: Brattli B, Prestvik T 1987: Berggrunnskart Linnajavri 2230-3, M 1:50 000 sort/hvitt. http://geo.ngu.no/kart/berggrunn/. Accessed 1 Aug 2014

  • Nicksiar M (2013) Effective parameters on crack initiation stress in low porosity rocks. Ph.D. thesis, University of Alberta, Canada

  • Nicksiar M, Martin CD (2012) Evaluation of methods for determining crack initiation in compression tests on low-porosity rocks. Rock Mech Rock Eng 45:607–617. doi:10.1007/s00603-012-0221-6

    Article  Google Scholar 

  • Ortlepp WD (2001) The behaviour of tunnels at great depth under large static and dynamic pressures. Tunn Undergr Space Technol 16:41–48

    Article  Google Scholar 

  • Ortlepp WD, Stacey TR (1994) Rockburst mechanisms in tunnels and shafts. Tunn Undergr Space Technol 9(1):59–65

    Article  Google Scholar 

  • Rawling GC, Baud P, T-f Wong (2002) Dilatancy, brittle strength, and anisotropy of foliated rocks: experimental deformation and micromechanical modeling. J Geophys Res 107(B10):2234. doi:10.1029/2001JB000472

    Article  Google Scholar 

  • Sigmond EMO (1985) Geological map of Norway—scale 1:3 mill. Norges geologiske undersøkelse

  • SINTEF (1985) Rock stress measurements in the Kobbskar highway tunnel (in Norwegian). Report STF36 F85092 (classified)

  • SINTEF (2004) Report on hydraulic fracturing, transfer-tunnel (3 attachments), Kobbelv, Nordland (in Norwegian). Report nr. STF22 F04144 (classified)

  • Sjöberg J, Christiansson R, Hudson JA (2003) ISRM suggested methods for rock stress estimation—part 2: overcoring methods. Int J Rock Mech Min 40:999–1010. doi:10.1016/j.ijrmms.2003.07.012

    Article  Google Scholar 

  • Statkraft (1984) Tunnel-plan (rev. e): Kobbelv Nordoverföringen, Tunnel Livsejavri–Linnajavri. Statskraftverkene, Scale 1:10000 (in Norwegian)

  • Statkraft (2009) Kobbelv HPS plan (Kobbelv reguleringsområde). Statkraft Energi AS Eiendomsforvaltning (in Norwegian)

  • Sweco (2012) Inspection report Nordoverføringen. Notat nr.: 476511-04 (in Norwegian)

  • Zhao XG, Cai M, Wang J, Ma LK (2013) Damage stress and acoustic emission characteristics of the Beishan granite. Int J Rock Mech Min 64:258–269

    Google Scholar 

Download references

Acknowledgements

The author wishes to thank two anonymous reviewers for their thoughtful comments in order to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Øyvind Dammyr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dammyr, Ø. Prediction of Brittle Failure for TBM Tunnels in Anisotropic Rock: A Case Study from Northern Norway. Rock Mech Rock Eng 49, 2131–2153 (2016). https://doi.org/10.1007/s00603-015-0910-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-015-0910-z

Keywords

Navigation