Skip to main content
Log in

Numerical Investigation of Seismically Induced Rock Mass Fatigue as a Mechanism Contributing to the Progressive Failure of Deep-Seated Landslides

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The importance of earthquakes in triggering catastrophic failure of deep-seated landslides has long been recognized and is well documented in the literature. However, seismic waves do not only act as a trigger mechanism. They also contribute to the progressive failure of large rock slopes as a fatigue process that is highly efficient in deforming and damaging rock slopes. Given the typically long recurrence time and unpredictability of earthquakes, field-based investigations of co-seismic rock slope deformations are difficult. We present here a conceptual numerical study that demonstrates how repeated earthquake activity over time can destabilize a relatively strong rock slope by creating and propagating new fractures until the rock mass is sufficiently weakened to initiate catastrophic failure. Our results further show that the damage and displacement induced by a certain earthquake strongly depends on pre-existing damage. In fact, the damage history of the slope influences the earthquake-induced displacement as much as earthquake ground motion characteristics such as the peak ground acceleration. Because seismically induced fatigue is: (1) characterized by low repeat frequency, (2) represents a large amplitude damage event, and (3) weakens the entire rock mass, it differs from other fatigue processes. Hydro-mechanical cycles, for instance, occur at higher repeat frequencies (i.e., annual cycles), lower amplitude, and only affect limited parts of the rock mass. Thus, we also compare seismically induced fatigue to seasonal hydro-mechanical fatigue. While earthquakes can progressively weaken even a strong, competent rock mass, hydro-mechanical fatigue requires a higher degree of pre-existing damage to be effective. We conclude that displacement rates induced by hydro-mechanical cycling are indicative of the degree of pre-existing damage in the rock mass. Another indicator of pre-existing damage is the seismic amplification pattern of a slope; frequency-dependent amplification factors are highly sensitive to changes in the fracture network within the slope. Our study demonstrates the importance of including fatigue-related damage history—in particular, seismically induced fatigue—into landslide stability and hazard assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Attewell PB, Farmer IW (1973) Fatigue behavior of rock. Int J Rock Mech Min Sci Geomech Abstr 10(1):1–9

    Article  Google Scholar 

  • Bakun-Mazor D, Hatzor YH, Glaser SD, Santamarina JC (2013) Thermally vs. seismically induced block displacements in Masada rock slopes. Int J Rock Mech Min Sci 61:196–211

    Google Scholar 

  • Bonzanigo L, Eberhardt E, Loew S (2007) Long-term investigation of a deep-seated creeping landslide in crystalline rock. Part I: geological and hydromechanical factors controlling the Campo Vallemaggia landslide. Can Geotech J 44(10):1157–1180

    Article  Google Scholar 

  • Bourdeau C, Havenith H-B (2008) Site effects modeling applied to the slope affected by the Suusamyr earthquake (Kyrgyzstan, 1992). Eng Geol 97:126–145

    Article  Google Scholar 

  • Bradley JJ, Fort AN, Jr (1966) Internal friction in rocks. In: Clark SP (ed) Handbook of physical constants. Geological Society of America, Boulder, pp 175–193

  • Burjánek J, Gassner-Stamm G, Poggi V, Moore JR, Fäh D (2010) Ambient vibration analysis of an unstable mountain slope. Geophys J Int 180(2):820–828

    Article  Google Scholar 

  • Burjánek J, Moore JR, Molina FXY, Faeh D (2012) Instrumental evidence of normal mode rock slope vibration. Geophys J Int 188:559–589

    Article  Google Scholar 

  • Christianson M, Board M, Rigby D (2006) UDEC simulation of triaxial testing of lithophysal tuffs. In: Proceedings of the 41st US rock mechanics symposium, ARMA-06-968

  • Crosta GB, Imposimato TS, Roddeman D, Chiesa S, Moia F (2005) Small fast-moving f low-like landslides in volcanic deposits: the 2001 Las Colinas landslide (El Salvador). Eng Geol 79:185–214

    Article  Google Scholar 

  • Cundall PA, Hart RD (1992) Numerical modelling of discontinua. Eng Comp 9:101–113

    Article  Google Scholar 

  • Eberhardt E (2008) Twenty-ninth Canadian Geotechnical Colloquium: the role of advanced numerical methods and geotechnical field measurements in understanding complex deep-seated rock slope failure mechanisms. Can Geotech J 45(4):484–510

    Article  Google Scholar 

  • Eberhardt E, Stead D, Coggan JS (2004) Numerical analysis of initiation and progressive failure in natural rock slopes—the 1991 Randa rockslide. Int J Rock Mech Min Sci 41:69–87

    Article  Google Scholar 

  • Eberhardt E, Bonzanigo L, Loew S (2007) Long-term investigation of a deep-seated creeping landslide in crystalline rock. Part II: mitigation measures and numerical modelling of deep drainage at Campo Vallemaggia. Can Geotech J 44(10):1181–1199

    Article  Google Scholar 

  • Evans SG, Bent AL (2004) The Las Colinas landslide, Santa Tecla: a highly destructive flowslide triggered by the January 13, 2001, El Salvador earthquake. In: Rose WI, Bommer JJ, Lopez DL, Carr MJ, Major JJ (eds) Natural hazards in El Salvador. Special Paper, Geological Society of America, Boulder, vol 375, pp 25–38

  • Fäh D, Moore JR, Burjanek J, Iosifescu I, Dalguer L, Dupray F, Michel C, Woessner J, Villiger A, Laue J, Marschall I, Gischig V, Loew S, Marin A, Gassner G, Alvarez S, Balderer W, Kästli P, Giardini D, Iosifescu C, Hurni L, Lestuzzi P, Karbassi A, Baumann C, Geiger A, Ferrari A, Laloui L, Clinton J, Deichmann N (2012) Coupled seismogenic geohazards in alpine regions. Bolletino di Geofisica Teorica ed Applicata 53(4):485–508

  • Fritsche S, Fäh D (2009) The 1946 magnitude 6.1 earthquake in the Valais: site-effects as a contributor to the damage. Swiss J Geosci 102:423–439

    Article  Google Scholar 

  • Fritsche SFD, Gisler M, Giardini D (2006) Reconstructing the damage field of the 1855 earthquake in Switzerland: historical investigations on a well-documented event. Geophys J Int 166:719–731

    Article  Google Scholar 

  • Gao FQ, Stead D (2014) The application of a modified Voronoi logic to brittle fracture modelling at the laboratory and field scale. Int J Rock Mech Min Sci 68:1–14

    Google Scholar 

  • Gischig VS, Moore JR, Evans KF, Amann F, Loew S (2011a) Thermomechanical forcing of deep rock slope deformation: 1. conceptual study of a simplified slope. J Geophys Res Earth Surf 116:F04010

  • Gischig VS, Moore JR, Evans KF, Amann F, Loew S (2011b) Thermomechanical forcing of deep rock slope deformation: 2. the Randa rock slope instability. J Geophy Res Earth Surf 116:F04011

  • Gischig V, Amann F, Moore JR, Loew S, Eisenbeiss H, Stempfhuber W (2011c) Composite rock slope kinematics at the current Randa instability, Switzerland, based on remote sensing and numerical modeling. Eng Geol 118:37–53

    Article  Google Scholar 

  • Gischig V, Eberhardt E, Moore JR, Hungr O (2015) On the seismic response of deep-seated rock slope instabilities—insights from numerical modelling. Eng Geol 193:1–18

    Article  Google Scholar 

  • Gunzburger Y, Merrien-Soukatchoff V, Guglielmi Y (2005) Influence of daily surface temperature fluctuations on rock slope stability: case study of the Rochers de Valabres slope (France). Int J Rock Mech Min Sci 42:331–349

    Article  Google Scholar 

  • Hadley JB (1964) Landslides and related phenomena accompanying the Hegben Lake earthquake of August 17, 1959. United States Geological Survey Professional Paper 435-K, pp 107–138

  • Hansmann J, Loew S, Evans K (2012) Reversible rock slope deformations caused by cyclic water table fluctuations in mountain slopes of the Central Swiss Alps. Hydrogeol J 20:73–91

  • Heincke B, Maurer H, Green AG, Willenberg H, Spillmann T, Burlini L (2006) Characterizing an unstable mountain slope using shallow 2D and 3D seismic tomography. Geophysics 71(6):B241–B256

    Article  Google Scholar 

  • Heynen M (2010) Einfluss lokaler Geländegegebenheiten auf die seismische Stabilität eines Felshanges (Seetalhorn, VS). Master‘s thesis, ETH Zurich, Switzerland

  • Hoek E, Diederichs MS (2006) Empirical estimation of rock mass modulus. Int J Rock Mech Min Sci 43:203–215

    Article  Google Scholar 

  • Huang R, Fan X (2013) The landslide story. Nat Geosci 6:325–326

    Article  Google Scholar 

  • Hungr O, Leroueil S, Picearelli L (2014) The Varnes classification of landslide types, an update. Landslides 11(2):167–194

    Article  Google Scholar 

  • Itasca (2011) UDEC—Universal Distinct Element Code, Version 5.0 User’s Manual. Itasca Consulting Group, Inc., Minneapolis

  • Jibson RW (2007) Regression models for estimating coseismic landslide displacement. Eng Geol 91:209–218

    Article  Google Scholar 

  • Jibson RW (2011) Methods for assessing the stability of slopes during earthquakes—a retrospective. Eng Geol 122:43–50

    Article  Google Scholar 

  • Jibson RW, Rathje EM, Jibson MW, Lee YW (2013) SLAMMER—Seismic LAndslide Movement Modeled using Earthquake Records. US Geological Survey Techniques and Methods

  • Jörg T (2008) Versagensmechanismus und Disposition des Medji Felssturz (Mattertal, Wallis). Master’s Thesis, ETH Zurich, Switzerland

  • Kuhlemeyer RL, Lysmer J (1973) Finite element method accuracy for wave propagation problems. J Soil Mech Found Div, ASCE 99:421–427

    Google Scholar 

  • Ladner F, Rovina H, Pointner E, Dräyer B, Sambeth U (2004) Ein angekündigter Felssturz. Geologische Überwachung und Instrumentierung des Felssturzes « Medji » bei St. Niklaus (Wallis), tec21, vol 27–28, pp 10–14

  • Lorig LJ, Cundall PA (1987) Modeling of reinforced concrete using the distinct element method. In: SEM/RILEM International conference on fracture of concrete and rock, Houston, pp 276–287

  • Macfarlane DF, Gillon MD (1996) The performance of landslide stabilization measures, Clyde power project, New Zealand. In: Senneset (ed) Proceedings of the 7th international symposium on landslides, Trondheim. Balkema, Rotterdam, vol 3, pp 1747–1757

  • Martin CD, Alzo’ubi AK, Cruden DM (2011) Progressive failure mechanisms in a slope prone to toppling. In: Slope Stability 2011 (ed) International symposium on rock slope stability in open pit mining and civil engineering, September 18–21, 2011, Vancouver

  • Moore JR, Gischig VS, Burjanek J, Loew S, Faeh D (2011) Site effects in unstable rock slopes: dynamic behavior of the Randa instability (Switzerland). Bull Seismol Soc Am 101(6):3110–3116

    Article  Google Scholar 

  • Moore JR, Gischig V, Amann F, Hunziker J, Burjanek J (2012) Earthquake-triggered rock slope failures: Damage and site effects. In: Eberhardt E, Froese C, Turner AK, Leroueil S (eds) Proceedings of the 11th international symposium on landslides. CRC Press, Banff, pp 869–874

  • Newmark NM (1965) Effects of earthquakes on dams and embankments. Geotechnique 15:139–159

    Article  Google Scholar 

  • Parker RN (2013) Hillslope memory and spatial and temporal distributions of earthquake-induced landslides. PhD thesis, Durham University

  • Parker RN, Petley D, Densmore A, Rosser N, Damby D, Brain M (2013) Progressive failure cycles and distributions of earthquake-triggered landslides. In: Ugai K, Yagi H, Wakai A (eds) Proceedings of the international symposium on earthquake induced landslides, Kiryu, Japan, 2012. Springer, New York

  • Petley D (2008) The Sichuan earthquake. Geogr Rev 22:2–4

    Google Scholar 

  • Plafker G, Ericksen GE (1978) Nevados Huascaran avalanches. In: Voight B (ed) Rockslides and Avalanches, 1, Natural Phenomena. Elsevier, Amsterdam, pp. 277–314

  • Preisig G, Eberhardt E, Smithyman M, Preh A, Bonzanigo L (2015) Hydromechanical rock mass fatigue in deep-seated landslides accompanying seasonal variations in pore pressures. Rock Mech Rock Eng (in review)

  • Rovina (2005) St.Niklaus, Wallis: Unneri Spssplatte, Felsrutschung und Felssturz vom 21.11.2002. Unpublished report by Rovina + Partner, Büro für Ingenieurgeologie, 3953 Varen

  • Sartori M, Baillifard F, Jaboyedoff M, Rouiller JD (2003) Kinematics of the 1991 Randa rockslides (Valais, Switzerland). Nat Hazards Earth Syst Sci 3:423–433. doi:10.5194/nhess-3-423-2003

    Article  Google Scholar 

  • Schindler C, Cuénod Y, Eisenlohr T, Joris CL (1993) Die Ereignisse vom 18. April und 9. Mai 1991 bei Randa (VS): ein atypischer Bergsturz in Raten. Eclogae Geol Helv 86(3):643–665

    Google Scholar 

  • Schorlemmer D, Wiemer S, Wyss M (2005) Variations in earthquake size distribution across different stress regimes. Nature 437:539–542

    Article  Google Scholar 

  • Watson AD, Moore DP, Stewart TW (2004) Temperature influence on rock slope movements at checkerboard creek. In: Lacerda WA et al (eds) Proceedings of the ninth international symposium on landslides. Taylor and Francis, Rio de Janeiro, pp 1293–1298

    Google Scholar 

  • Watson AD, Psutka JF, Steward TW, Moore DP (2007) Investigations and monitoring of rock slopes at Checkerboard Creek and Little Chief Slide. In: Eberhardt E, Stead D, Morrison T (eds) Proceedings of the 1st Canada–US Rock Mechanics Symposium, Vancouver, pp 1015–1022

  • Welkner D, Eberhardt E, Hermanns RL (2010) Hazard investigation of the Portillo Rock Avalanche site, central Andes, Chile, using an integrated field mapping and numerical modelling approach. Eng Geol 114:278–297

  • Willenberg H (2004) Geologic and kinematic model of a complex landslide in crystalline rock (Randa, Switzerland). DSc thesis, ETH Zürich, Switzerland

  • Wolter A, Gischig V, Stead D, Clague JJ (2015) Investigation of geomorphic and seismic effects on the 1959 Madison Canyon, Montana landslide using an integrated field, engineering geomorphology mapping, and numerical modelling approach. Rock Mech Rock Eng (in review)

  • Xiao J-Q, Ding D-X, Xu G, Jiang F-L (2009) Inverted S-shaped model for nonlinear fatigue in rock. Int J Rock Mech Min Sci 46:643–648

    Article  Google Scholar 

  • Yin Y, Zheng W, Li X, Sun P, Li B (2011) Catastrophic landslides associated with the M8.0 Wenchuan earthquake. Bull Eng Geol Environ 70:15–32

    Article  Google Scholar 

  • Yugsi Molina FX (2010) Structural control of multi-scale discontinuities on slope instabilities in crystalline rock (Matter valley, Switzerland). DSc thesis, ETH Zurich, Switzerland

  • Zangerl C, Eberhardt E, Perzlmaier S (2010) Kinematic behaviour and velocity characteristics of a complex deep-seated crystalline rockslide system in relation to its interaction with a dam reservoir. Eng Geol 112:53–67

    Article  Google Scholar 

Download references

Acknowledgments

This study was jointly funded by the Swiss National Science Foundation, projects No. P300P2_151291 (V. S. Gischig) and No. 146075 (G. Preisig), and the Natural Sciences and Engineering Research Council of Canada through a Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Gischig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gischig, V., Preisig, G. & Eberhardt, E. Numerical Investigation of Seismically Induced Rock Mass Fatigue as a Mechanism Contributing to the Progressive Failure of Deep-Seated Landslides. Rock Mech Rock Eng 49, 2457–2478 (2016). https://doi.org/10.1007/s00603-015-0821-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-015-0821-z

Keywords

Navigation