Skip to main content
Log in

Ellipticity Induced in Vacuum Birefringence

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We consider signals of photon–photon scattering in laser-based, low energy experiments. In particular, we consider the ellipticity induced on a probe beam by a strong background field, and compare it with a recent worldline expression for the photon polarisation flip amplitude. When the probe and the background are plane waves, the ellipticity is equal to the flip amplitude. Here we investigate the ellipticity–amplitude relation for more physical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Di Piazza, A., Muller, C., Hatsagortsyan, K.Z., Keitel, C.H.: Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 84, 1177 (2012) [arXiv:1111.3886 [hep-ph]]

  2. Toll, J.S.: The Dispersion Relation for Light and Its Application to Problems Involving Electron Pairs. Ph.D. thesis, Princeton (1952, unpublished)

  3. Dittrich W., Gies H.: Probing the quantum vacuum: perturbative effective action approach in quantum electrodynamics and its application. Tracts Mod. Phys. 166, 1 (2000)

    Article  ADS  Google Scholar 

  4. Dinu, V., Heinzl, T., Ilderton, A., Marklund, M., Torgrimsson, G.: Vacuum refractive indices and helicity flip in strong-field QED. Phys. Rev. D 89(12), 125003 (2014) [arXiv:1312.6419 [hep-ph]]

  5. Dinu, V., Heinzl, T., Ilderton, A., Marklund, M., Torgrimsson, G.: Photon polarization in light-by-light scattering: finite size effects. Phys. Rev. D 90(4), 045025 (2014) [arXiv:1405.7291 [hep-ph]]

  6. Heinzl, T., Liesfeld, B., Amthor, K.-U., Schwoerer, H., Sauerbrey, R., Wipf, A.: On the observation of vacuum birefringence. Opt. Commun. 267, 318 (2006). [hep-ph/0601076]

  7. HIBEF: http://www.hzdr.de/db/Cms?pNid=427&pOid=35325

  8. Private (or personal) communication from Heinzl, T. regarding a paper in preparation, by Schlenvoigt, H.-P., Cowan, T.E., Heinzl, T., Sauerbrey, R., Schramm, U

  9. Jarlskog G., Joensson L., Pruenster S., Schulz H.D., Willutzki H.J., Winter G.G.: Measurement of delbrueck scattering and observation of photon splitting at high energies. Phys. Rev. D 8, 3813 (1973)

    Article  ADS  Google Scholar 

  10. Schumacher M., Borchert I., Smend F., Rullhusen P.: Delbruck scattering of 2.75-MeV photons by lead. Phys. Lett. B 59, 134 (1975)

    Article  ADS  Google Scholar 

  11. Neville R.A., Rohrlich F.: Quantum electrodynamics on null planes and applications to lasers. Phys. Rev. D 3, 1692 (1971)

    Article  ADS  Google Scholar 

  12. Bakker, B.L.G., Bassetto, A., Brodsky, S.J., Broniowski, W., Dalley, S., Frederico, T., Glazek, S.D., Hiller, J.R. et al.: Light-front quantum chromodynamics: a framework for the analysis of hadron physics. Nucl. Phys. Proc. Suppl. 251–252, 165 (2014) [arXiv:1309.6333 [hep-ph]]

  13. Zhao, X., Ilderton, A., Maris, P., Vary, J.P.: Scattering in time-dependent basis light-front quantization. Phys. Rev. D 88, 065014 (2013) [arXiv:1303.3273 [nucl-th]]

  14. Zhao, X., Ilderton, A., Maris, P., Vary, J.P.: Non-perturbative quantum time evolution on the light-front. Phys. Lett. B 726, 856 (2013) [arXiv:1309.5338 [nucl-th]]

  15. Brodsky, S.J., Pauli, H.-C., Pinsky, S.S.: Quantum chromodynamics and other field theories on the light cone. Phys. Rep. 301, 299 (1998) [hep-ph/9705477]

  16. Heinzl, T.: Light cone dynamics of particles and fields. [hep-th/9812190]

  17. Di Piazza, A., Hatsagortsyan, K.Z., Keitel, C.H.: Light diffraction by a strong standing electromagnetic wave. Phys. Rev. Lett. 97, 083603 (2006) [hep-ph/0602039]

  18. Euler H., Kockel B.: Ueber die Streuung von Licht an Licht nach der Diracschen Theorie. Naturwissenschaften 23, 246 (1935)

    Article  ADS  Google Scholar 

  19. Heisenberg, W., Euler, H.: Consequences of Dirac’s theory of positrons. Z. Phys. 98, 714 (1936) [physics/0605038]

  20. Davila, J.M., Schubert, C., Trejo, M.A.: Photonic processes in Born-Infeld theory. Int. J. Mod. Phys. A 29, 1450174 (2014). [arXiv:1310.8410 [hep-ph]]

  21. Davis L.W.: Theory of electromagnetic beams. Phys. Rev. A 19, 1177 (1979)

    Article  ADS  Google Scholar 

  22. McDonald, K.T.: Gaussian laser beams and particle acceleration (1995). http://www.hep.princeton.edu/~mcdonald/accel/gaussian

  23. Mandel L., Wolf E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  24. King, B., Di Piazza, A., Keitel, C.H.: Double-slit vacuum polarisation effects in ultra-intense laser fields. Phys. Rev. A 82, 032114 (2010) [arXiv:1301.7008 [physics.optics]]

  25. King, B., Keitel, C.H.: Photon–photon scattering in collisions of laser pulses. New J. Phys. 14, 103002 (2012) [arXiv:1202.3339 [hep-ph]]

  26. Gies, H., Karbstein, F., Seegert, N.: Quantum reflection as a new signature of quantum vacuum nonlinearity. New J. Phys. 15, 083002 (2013) [arXiv:1305.2320 [hep-ph]]

  27. Schubert, C.: Perturbative quantum field theory in the string inspired formalism. Phys. Rep. 355, 73 (2001) [hep-th/0101036]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greger Torgrimsson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torgrimsson, G. Ellipticity Induced in Vacuum Birefringence. Few-Body Syst 56, 615–620 (2015). https://doi.org/10.1007/s00601-015-0994-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-015-0994-8

Keywords

Navigation