Skip to main content
Log in

Urinary hypoxanthine and xanthine levels in acute coronary syndromes

  • Original
  • Published:
International Journal of Clinical and Laboratory Research

Abstract

Ischemia leads to impaired ATP metabolism, with increased production of purine degradation products, such as hypoxanthine and xanthine, which are useful markers of tissue hypoxia. These extracellular markers of ischemia have been studied extensively in many clinical conditions of oxidative stress, including perinatal asphyxia, acute respiratory distress syndrome, cerebral ischemia, and preeclampsia. The aim of this study was to explore the usefulness of urinary hypoxanthine and xanthine as ischemia markers in acute coronary syndromes. Urinary excretion of hypoxanthine and xanthine was assessed by high-performance liquid chromatography in 30 patients with acute coronary syndromes and in 30 age- and sex-matched controls. Serum and urine uric acid, creatinine, and urea concentrations were also determined. Hypoxanthine excretion was significantly elevated in patients compared with healthy controls (84.37±8.63 and 42.70±3.97 nmol/mg creatinine, mean±SEM,P<0.0001). Urinary xanthine levels were also increased in patients with acute coronary syndromes (100.13±12.14 and 34.74±4.07 nmol/mg creatinine patients and controls, respectively;P<0.0001). Hypoxanthine and xanthine excretion showed a strong positive correlation in both groups. Significant negative correlations between urinary hypoxanthine and uric acid and xanthine and uric acid were observed in the patients, but not in controls. In conclusion, increased levels of ATP degradation products hypoxanthine and xanthine are observed in various hypoxic clinical conditions. This study suggests that these parameters may be useful markers of ischemia in patients with acute coronary syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Valik D, Jones JD. Hereditary disorders of purine metabolism: identification of their biochemical phenotypes in the clinical laboratory. Mayo Clin Proc 1997;72:719.

    PubMed  CAS  Google Scholar 

  2. Curto R, Voit EO, Sorribas A, Cascante M. Validation and steady-state analysis of a power-law model of purine metabolism in man. Biochem J 1997;324:761.

    PubMed  CAS  Google Scholar 

  3. Valtysson J, Persson L, Hillered L. Extracellular ischaemia markers in repeated global ischaemia and secondary hypoxaemia monitored by microdialysis in rat brain. Acta Neurochir (Wien) 1998;140:387.

    Article  CAS  Google Scholar 

  4. Quinlan GJ, Lamb NJ, Tilley R, Evans TW, Gutteridge JM. Plasma hypoxanthine levels in ARDS: implications for oxidative stress, morbidity and mortality. Am J Respir Crit Care Med 1997;155:479.

    PubMed  CAS  Google Scholar 

  5. Fellman V, Raivio KO. Reperfusion injury as the mechanism of brain damage after perinatal asphyxia. Pediatr Res 1997;41:599.

    Article  PubMed  CAS  Google Scholar 

  6. Marro PJ, Baumgart S, Delivoria-Papadopoulos M, Zirin S, Corcoran L, McGaurn SP, et al. Purine metabolism and inhibition of xanthine oxidase in severely hypoxic neonates going onto extracorporeal membrane oxygenation. Pediatr Res 1997;41:513.

    Article  PubMed  CAS  Google Scholar 

  7. Gattullo D, Pagliaro P, Losano G. Mechanisms of ischemic preconditioning:relation with ischemia-reperfusion injury. G Ital Cardiol 1997;27:288.

    PubMed  CAS  Google Scholar 

  8. Many A, Hubel C, Roberts JM. Hyperuricemia and xanthine oxidase in preeclampsia, revisited. Am J Obstet Gynecol 1996;174:288.

    Article  PubMed  CAS  Google Scholar 

  9. Zhang Z, Blake DR, Stevens CR, Kanzcler JM, Winyard PG, Symons PC, et al. Both xanthine dehydrogenase xanthine oxidase can oxidise NADH to generate reactive oxygen species. Free Radic Res 1998;28:151.

    Article  PubMed  CAS  Google Scholar 

  10. Saugstad OD. Mechanisms of tissue injury by oxygen radicals:implications for neonatal disease. Acta Paediatr 1996;85:1.

    Article  PubMed  CAS  Google Scholar 

  11. Busse M, Vaupel P. Accumulation of purine catabolites in solid tumors exposed to therapeutic hyperthermia. Experientia 1996;52:469.

    Article  PubMed  CAS  Google Scholar 

  12. Kurtz TW, Kabra PM, Booth BE, Al-Bander HA, Portale AA, Serena BG, et al. Liquid-chromatographic measurements of inosine, hypoxanthine and xanthine in studies of fructose-induced degradation of adenine nucleotides in humans and rats. Clin Chem 1986;32:782.

    PubMed  CAS  Google Scholar 

  13. McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 1985;312:159.

    PubMed  CAS  Google Scholar 

  14. Dhalla NS, Golfman L, Takeda S, Takeda N, Nagano M. Evidence for the role of oxidative stress in acute ischemic heart disease: a brief review. Can J Cardiol 1999;15:587.

    PubMed  CAS  Google Scholar 

  15. Ferrari R, Agnoletti L, Comini L, Gaia G, Bachetti T, Cargnoni A, et al. Oxidative stress during myocardial ischemia and heart failure. Eur Heart J 1998;19 [Suppl B]:B2.

  16. Hogg N. Free radicals in disease. Semin Reprod Endocrinol 1998;16:241.

    Article  PubMed  CAS  Google Scholar 

  17. Gimpel JA, Lahpor JR, Molen AJ van der, Domen J, Hitchcock JF. Reduction of reperfusion injury of human myocardium by allopurinol: a clinical study. Free Radic Biol Med 1995;19:251.

    Article  PubMed  CAS  Google Scholar 

  18. Castelli P, Condemi AM, Brambillasca C, Fundaro P, Botta M, Lemma M, et al. Improvement of cardiac function by allopurinol in patients undergoing cardiac surgery. J Cardiovasc Pharmacol 1995;25:119.

    Article  PubMed  CAS  Google Scholar 

  19. Shadid M, Van Bel F, Steendjik P, Dorrepaal CA, Moison R, Velde ET van der, Baan J. Pretreatment with allopurinol in cardiac hypoxic-ischemic reperfusion injury in newborn lambs exerts its beneficial effect through afterload reduction. Basic Res Cardiol 1999;94:23.

    Article  PubMed  CAS  Google Scholar 

  20. Koyama K, Kaya M, Ishigaki T, Tsujita J, Hori S, Seino T, Kasugai A. Role of xanthine oxidase in delayed lipid peroxidation in rat liver induced by acute exhausting exercise. Eur J Appl Physiol 1999;80:28.

    Article  CAS  Google Scholar 

  21. Konaka A, Nishijama M, Tanaka A, Kunikata T, Kato S, Takeuchi K. Nitric oxide, superoxide radicals and mast cells in the pathogenesis of indomethacin,induced small intestinal lesions in rats. J Physiol Pharmacol 1999;50:25.

    PubMed  CAS  Google Scholar 

  22. Mishra OP, Delivoria-Papadopoulos M. Cellular mechanisms of hypoxic injury in the developing brain. Brain Res Bull 1999;48:233.

    Article  PubMed  CAS  Google Scholar 

  23. Harkness RA. Hypoxanthine, xanthine and uridine in body fluids,indicators of ATP depletion. J Chromatogr 1988;429:255.

    Article  PubMed  CAS  Google Scholar 

  24. Hartmann F, Kampmann M, Frey N, Müller-Bardorff M, Katus HA. Biochemical markers in the diagnosis of coronary artery disease. Eur Heart J 1998;19 [Suppl N]:N2.

  25. Ueda S, Ikeda U, Yamamoto K, Takahashi M, Nishinaga M, Nago N, Shimada K. C-reactive protein as a predictor of cardiac rupture after acute myocardial infarction. Am Heart J 1996;131:857.

    Article  PubMed  CAS  Google Scholar 

  26. Haverkate F, Thompson SG, Pyke SDM, Gallimore JR, Pepys MB. Production of C-reactive protein and risk of coronary events in stable and unstable angina. Lancet 1997;349:462.

    Article  PubMed  CAS  Google Scholar 

  27. Ridker PM, Cushman M, Stampher MJ, Tracy RP, Hennekens CH. Inflammation, aspirin and the risk of cardiovascular disease in apparently healthy men. N Engl J Med 1997;336:973.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turgan, N., Habif, S., Gülter, C. et al. Urinary hypoxanthine and xanthine levels in acute coronary syndromes. Int J Clin Lab Res 29, 162–165 (1999). https://doi.org/10.1007/s005990050084

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s005990050084

Key words

Navigation