Skip to main content
Log in

The roles played by the MYCN, Trk, and ALK genes in neuroblastoma and neural development

  • Review Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Neuroblastoma is one of the most frequent, yet distinctive and challenging childhood tumors. The uniqueness of this tumor depends on its biological markers, which classify neuroblastomas into favorable and unfavorable, with 5-year survival rates ranging from almost 100–30%. In this review, we focus on some biological factors that play major roles in neuroblastoma: MYCN, Trk, and ALK. The MYCN and Trk family genes have been studied for decades and are known to be crucial for the tumorigenesis and progression of neuroblastoma. ALK gene mutations have been recognized recently to be responsible for familial neuroblastomas. Each factor plays an important role in normal neural development, regulating cell proliferation or differentiation by activating several signaling pathways, and interacting with each other. These factors have been studied not only as prognostic factors, but also as targets of neuroblastoma therapy, and some clinical trials are ongoing. We review the basic aspects of MYCN, Trk, and ALK in both neural development and in neuroblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Davidoff AM. Neuroblastoma. Semin Pediatr Surg. 2012;21:2–14.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Domingo-Fernandez R, Watters K, Piskareva O, Stallings RL, Bray I. The role of genetic and epigenetic alterations in neuroblastoma disease pathogenesis. Pediatr Surg Int. 2013;29:101–19.

    Article  PubMed  Google Scholar 

  3. Decock A, Ongenaert M, De Wilde B, Brichard B, Noguera R, Speleman F, et al. Stage 4S neuroblastoma tumors show a characteristic DNA methylation portrait. Epigenetics. 2016;11:761–71.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Olsson M, Beck S, Kogner P, Martinsson T, Carén H. Genome-wide methylation profiling identifies novel methylated genes in neuroblastoma tumors. Epigenetics. 2016;11:74–84.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mossé YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF, et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 2008;455:930–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Janoueix-Lerosey I, Lequin D, Brugieres L, Ribeiro A, de Pontual L, Combaret V, et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature. 2008;455:967–70.

    Article  CAS  PubMed  Google Scholar 

  7. Mossé YP, Wood A, Maris JM. Inhibition of ALK signaling for cancer therapy. Clin Cancer Res. 2009;15:5609–14.

    Article  CAS  PubMed  Google Scholar 

  8. Barone G, Anderson J, Pearson ADJ, Petrie K, Chesler L. New strategies in neuroblastoma: Therapeutic targeting of MYCN and ALK. Clin. Cancer Res. 2013;19:5814–21.

    CAS  Google Scholar 

  9. Kohl NE, Kanda N, Schreck RR, Bruns G, Latt SA, Gilbert F, et al. Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell. 1983;35:359–67.

    Article  CAS  PubMed  Google Scholar 

  10. Schwab M, Ellison J, Busch M, Rosenau W, Varmus HE, Bishop J. Enhanced expression of the human gene N-myc consequent to amplification of DNA may contribute to malignant progression of neuroblastoma. Proc Natl Acad Sci USA 1984;81:4940–4.

    Article  Google Scholar 

  11. Wakamatsu Y, Watanabe Y, Nakamura H, Kondoh H. Regulation of the neural crest cell fate by N-myc: promotion of ventral migration and neuronal differentiation. Development. 1997;124:1953–62.

    CAS  PubMed  Google Scholar 

  12. Brodeur GM, Seeger RC, Schwab M, Varmus H, Bishop J. Amplification of N-myc in untreated human neuroblastoma correlates with advanced disease stage. Prog Clin Biol Res. 1985;175:105–13.

    CAS  PubMed  Google Scholar 

  13. Mathew P, Valentine MB, Bowman LC, Rowe ST, Nash MB, Valentine V, et al. Detection of MYCN gene amplification in neuroblastoma by fluorescence in situ hybridization: a pediatric oncology group study. Neoplasia. 2001;3:105–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Storlazzi CT, Lonoce A, Guastadisegni MC, Trombetta D, Addabbo PD, Daniele G, et al. Gene amplification as double minutes or homogeneously staining regions in solid tumors: origin and structure Gene amplification as double minutes or homogeneously staining regions in solid tumors: origin and structure. Genome Res. 2010;20:1198–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reiter JL, Brodeur GM. High-resolution mapping of a 130-kb core region of the MYCN amplicon in neuroblastomas. Genomics. 1996;32:97–103.

    Article  CAS  PubMed  Google Scholar 

  16. Reiter JL, Brodeur GM. MYCN is the only highly expressed gene from the core amplified domain in human neuroblastomas. Genes Chromosom Cancer. 1998;23:134–40.

    Article  CAS  PubMed  Google Scholar 

  17. Nishi Y, Noguchi T, Akiyama K, Yokoyama M, Kanda NMT. Amplification of a DEAD box gene (DDX1) with the MYCN gene in neuroblastoma as a result of cosegregation of sequences flanking the MYCN locus. Genes Chromosom. Cancer. 1996;15:129–33.

    Google Scholar 

  18. Kaneko S, Ohira M, Nakamura Y, Isogai E, Nakagawara A, Kaneko M. Relationship of DDX1 and NAG gene amplification/overexpression to the prognosis of patients with MYCN-amplified neuroblastoma. J Cancer Res Clin Oncol. 2007;133:185–92.

    Article  CAS  PubMed  Google Scholar 

  19. Bagci O, Tumer S, Olgun N, Altungoz O. Copy number status and mutation analyses of anaplastic lymphoma kinase (ALK) gene in 90 sporadic neuroblastoma tumors. Cancer Lett. 2012;317:72–7.

    Article  CAS  PubMed  Google Scholar 

  20. Fransson S, Hansson M, Ruuth K, Djos A, Berbegall A, Javanmardi N, et al. Intragenic anaplastic lymphoma kinase (ALK) rearrangements: translocations as a novel mechanism of ALK activation in neuroblastoma tumors. Genes Chromosom Cancer. 2015;54:99–109.

    Article  CAS  PubMed  Google Scholar 

  21. Wada RK, Seeger RC, Brodeur GM, Einhorn PA, Rayner SA, Tomayko MM, et al. Human neuroblastoma cell lines that express N-myc without gene amplification. Cancer. 1993;72:3346–54.

    Article  CAS  PubMed  Google Scholar 

  22. Nakada K, Fujioka T, Kitagawa H, Takakuwa T. Expressions of N-myc and ras oncogene products in neuroblastoma and their correlations with prognosis. Jpn J Clin Oncol. 1993;23:149–55.

    CAS  PubMed  Google Scholar 

  23. Tanaka T, Higashi M, Kimura K, Wakao J, Fumino S, Iehara T. MEK inhibitors as a novel therapy for neuroblastoma: their in vitro effects and predicting their efficacy. J Pediatr Surg. 2016;51:2074–9.

    Article  PubMed  Google Scholar 

  24. Wenzel A, Cziepluch C, Hamann U, Schürmann J, Schwab M. The N-Myc oncoprotein is associated in vivo with the phosphoprotein Max(p20/22) in human neuroblastoma cells. EMBO J. 1991;10:3703–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wanzel M, Herold S, Eilers M. Transcriptional repression by Myc. Trends Cell Biol. 2003;13:146–50.

    Article  CAS  PubMed  Google Scholar 

  26. Brenner C, Deplus R, Line Didelot C, Loriot A, Viré E, De Smet C, et al. Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO J. 2005;24:336–46.

    Article  CAS  PubMed  Google Scholar 

  27. Walz S, Lorenzin F, Morton J, Wiese KE, von Eyss B, Herold S, et al. Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature. 2015;511:483–7.

    Article  CAS  Google Scholar 

  28. Corvetta D, Chayka O, Gherardi S, D’Acunto CW, Cantilena S, Valli E, et al. Physical interaction between MYCN oncogene and polycomb repressive complex 2 (PRC2) in neuroblastoma: Functional and therapeutic implications. J Biol Chem. 2013;288:8332–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. He S, Liu Z, Oh DY, Thiele CJ. MYCN and the epigenome. Front Oncol. 2013;3:1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kubota Y, Kim S, Iguchi-Ariga S. H A. Transrepression of the N-myc expression by c-myc protein. Biochem Biophys Res Commun. 1989;162:991–7.

    Article  CAS  PubMed  Google Scholar 

  31. Cotterman R, Knoepfler PS. N-Myc regulates expression of pluripotency genes in neuroblastoma including lif, klf2, klf4, and lin28b. PLoS One. 2009;4.

  32. Hatton BA, Knoepfler PS, Kenney AM, Rowitch DH, Moreno De Alborán I, Olson JM, et al. N-myc is an essential downstream effector of shh signaling during both normal and neoplastic cerebellar growth. Cancer Res. 2006;66:8655–61.

    Article  CAS  PubMed  Google Scholar 

  33. Smith JR, Moreno L, Heaton SP, Chesler L, Pearson ADJ, Garrett MD. Novel pharmacodynamic biomarkers for MYCN protein and PI3K/AKT/mTOR pathway signaling in children with neuroblastoma. Mol Oncol. 2016;10:538–52.

    Article  CAS  PubMed  Google Scholar 

  34. Segerström L, Baryawno N, Sveinbjörnsson B, Wickström M, Elfman L, Kogner P, et al. Effects of small molecule inhibitors of PI3K/Akt/mTOR signaling on neuroblastoma growth in vitro and in vivo. Int J Cancer. 2011;129:2958–65.

    Article  CAS  PubMed  Google Scholar 

  35. Kapeli K, Hurlin PJ. Differential regulation of N-Myc and c-Myc synthesis, degradation, and transcriptional activity by the ras/mitogen-activated protein kinase pathway. J Biol Chem. 2011;286:38498–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Weiss WA, Aldape K, Mohapatra G, Feuerstein BG, Bishop JM. Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J. 1997;16:2985–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hansford LM, Thomas WD, Keating JM, Burkhart C, Peaston AE, Norris MD, et al. Mechanisms of embryonal tumor initiation: distinct roles for MycN expression and MYCN amplification. Proc Natl Acad Sci USA. 2004;101:12664–9.

    Article  Google Scholar 

  38. Puissant A, Frumm SM, Alexe G, Bassil CF, Qi J, Chanthery YH, et al. Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. 2013;3:309–23.

    Article  CAS  Google Scholar 

  39. Henssen A, Althoff K, Odersky A, Beckers A, Koche R, Speleman F, et al. Targeting MYCN-driven transcription by BET-bromodomain inhibition. Clin Cancer Res. 2016;22:2470–81.

    Article  CAS  PubMed  Google Scholar 

  40. Benedetti M, Levi A, Chao MV. Differential expression of nerve growth factor receptors leads to altered binding affinity and neurotrophin responsiveness. Proc Natl Acad Sci USA. 1993;90:7859–63.

  41. Bibel M, Hoppe E, Barde Y. Biochemical and functional interactions between the neurotrophin receptors trk and p75 NTR. EMBO J. 1999;18:616–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Anderson D. Cell fate determination in the peripheral nervous system: the sympathoadrenal progenitor. J Neurobiol. 1993;24:185–98.

    Article  CAS  PubMed  Google Scholar 

  43. Patapoutian A, Reichardt LF. Trk receptors: Mediators of neurotrophin action. Curr Opin Neurobiol. 2001;11:272–80.

    Article  CAS  PubMed  Google Scholar 

  44. Lu Y, Christian K, Lu B. BDNF: A key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem. 2008;89:312–23.

    Article  CAS  PubMed  Google Scholar 

  45. Li Z, Zhang Y, Tong Y, Tong J, Thiele CJ. Trk inhibitor attenuates the BDNF/TrkB-induced protection of neuroblastoma cells from etoposide in vitro and in vivo. Cancer Biol Ther. 2015;16:477–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pearse RN, Swendeman SL, Li Y, Rafii D, Hempstead BL. A neurotrophin axis in myeloma: TrkB and BDNF promote tumor-cell survival. Blood. 2005;105:4429–36.

    Article  CAS  PubMed  Google Scholar 

  47. Haapasalo A, Saarelainen T, Moshnyakov M, Aruma U, Kiema T, Saarma M, et al. Expression of the naturally occurring truncated trkB neurotrophin receptor induces outgrowth of filopodia and processes in neuroblastoma cells. Oncogene. 1999;18:1285–96.

    Article  CAS  PubMed  Google Scholar 

  48. Stoilov P, Castren E, Stamm S. Analysis of the human TrkB gene genomic organization reveals novel TrkB isoforms, unusual gene length, and splicing mechanism. Biochem Biophys Res Commun. 2002;290:1054–65.

    Article  CAS  PubMed  Google Scholar 

  49. Tacconelli A, Farina AR, Cappabianca L, DeSantis G, Tessitore A, Vetuschi A, et al. TrkA alternative splicing: a regulated tumor-promoting switch in human neuroblastoma. Cancer Cell. 2004;6:347–60.

    Article  CAS  PubMed  Google Scholar 

  50. Hoehner JC, Olsen L, Sandstedt B, Kaplan DR, Påhlman S. Association of neurotrophin receptor expression and differentiation in human neuroblastoma. Am J Pathol. 1995;147:102–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yamashiro D, Nakagawara A, Ikegaki N, Liu X, Brodeur G. Expression of TrkC in favorable human neuroblastoma. Oncogene. 1996;12:37–41.

    CAS  PubMed  Google Scholar 

  52. Ho R, Minturn JE, Simpson AM, Iyer R, Light JE, Evans AE, et al. The effect of P75 on Trk receptors in neuroblastomas. Cancer Lett. 2011;305:76–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nikoletopoulou V, Lickert H, Frade JM, Rencurel C, Giallonardo P, Zhang L, et al. Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not. Nature. 2010;467:59–63.

    Article  CAS  PubMed  Google Scholar 

  54. Nakagawara A. Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med. 1993;328:847–53.

    Article  CAS  PubMed  Google Scholar 

  55. Brodeur GM, Bagatell R. Mechanisms of neuroblastoma regression. Nat Rev Clin Oncol. 2014;11:704–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Norris RE, Minturn JE, Brodeur GM, Maris JM, Adamson PC. Preclinical evaluation of lestaurtinib (CEP-701) in combination with retinoids for neuroblastoma. Cancer Chemother Pharmacol. 2011;68:1469–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Minturn JE, Evans AE, Villablanca JG, Yanik GA, Park JR, Shusterman S, et al. Phase I trial of lestaurtinib for children with refractory neuroblastoma: a new approaches to neuroblastoma therapy consortium study. Cancer Chemother Pharmacol. 2011;68:1057–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Leitão A, Schramm A, Eggert A. Discovery of a new bioactive molecule for neuroblastoma. Chem Biol Drug Des. 2013;82:233–41.

    Article  CAS  PubMed  Google Scholar 

  59. Berry T, Luther W, Bhatnagar N, Jamin Y, Poon E, Sanda T, et al. The ALKF1174L mutation potentiates the oncogenic activity of MYCN in neuroblastoma. Cancer Cell. 2012;22:117–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Montavon G, Jauquier N, Coulon A, Peuchmaur M, Flahaut M, Bourloud KB, et al. Wild-type ALK and activating ALK-R1275Q and ALK-F1174L mutations upregulate Myc and initiate tumor formation in murine neural crest progenitor cells. Oncotarget. 2014;5:4452–66.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Pulford K, Lamant L, Espinos E, Jiang Q, Xue L, Turturro F, et al. The emerging normal and disease-related roles of anaplastic lymphoma kinase. Cell Mol Life Sci. 2004;61:2939–53.

    Article  CAS  PubMed  Google Scholar 

  62. Allouche M. ALK is a novel dependence receptor: potential implications in development and cancer. Cell Cycle. 2007;6:1533–8.

    Article  CAS  PubMed  Google Scholar 

  63. Umapathy G, Wakil A, El Witek B, Chesler L, Danielson L, Deng X, et al. The kinase ALK stimulates the kinase ELK5 to promote the expression of the oncogene MYCN in neuroblastoma. Sci Signal. 2014;7:1–11.

    Article  CAS  Google Scholar 

  64. Lambertz I, Kumps C, Claeys S, Lindner S, Beckers A, Janssens E, et al. Upregulation of MAPK negative feedback regulators and RET in mutant ALK neuroblastoma: implications for targeted treatment. Clin Cancer Res. 2015;21:3327–39.

    Article  CAS  PubMed  Google Scholar 

  65. Cazes A, Lopez-Delisle L, Tsarovina K, Pierre-Eugène C, De Preter K, Peuchmaur M, et al. Activated Alk triggers prolonged neurogenesis and Ret upregulation providing a therapeutic target in ALK-mutated neuroblastoma. Oncotarget. 2014;5:2688–702.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mossé YP, Lim MS, Voss SD, Wilner K, Ruffner K, Laliberte J, et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children’s Oncology Group phase 1 consortium study. Lancet Oncol. 2013;14:472–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Guan J, Tucker ER, Wan H, Chand D, Danielson LS, Ruuth K, et al. The ALK inhibitor PF-06463922 is effective as a single agent in neuroblastoma driven by expression of ALK and MYCN. Dis Model Mech. 2016;9:941–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayumi Higashi.

Ethics declarations

Conflict of interest

Mayumi Higashi, Kohei Sakai, Shigeaki Fumino, Shigeyoshi Aoi, Taizo Furukawa and Tatsuro Tajiri have no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higashi, M., Sakai, K., Fumino, S. et al. The roles played by the MYCN, Trk, and ALK genes in neuroblastoma and neural development. Surg Today 49, 721–727 (2019). https://doi.org/10.1007/s00595-019-01790-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-019-01790-0

Keywords

Navigation