Skip to main content

Advertisement

Log in

Risk of cause-specific death, its sex and age differences, and life expectancy in post-pancreatitis diabetes mellitus

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

The aim was to investigate sex- and age-stratified risks of cause-specific death and life expectancy in individuals with post-pancreatitis diabetes mellitus (PPDM).

Methods

Nationwide data on mortality in New Zealand were obtained. For two head-to-head comparisons (PPDM versus type 2 diabetes mellitus [T2DM]; PPDM versus type 1 diabetes mellitus [T1DM]), the groups were matched on age, sex, and calendar year of diabetes diagnosis. Multivariable Cox regression analyses were conducted to estimate risks of vascular, cancer, and non-vascular non-cancer mortality. Remaining life expectancy at age of diabetes diagnosis was estimated using the Chiang II method.

Results

A total of 15,848 individuals (1,132 PPDM, 3,396 T1DM, and 11,320 T2DM) were included. The risks of vascular mortality and non-vascular non-cancer mortality did not differ significantly between PPDM and T2DM or T1DM. PPDM was associated with a significantly higher risk of cancer mortality compared with T2DM (adjusted hazard ratio, 1.32; 95% confidence interval, 1.08–1.63) or T1DM (adjusted hazard ratio, 1.65; 95% confidence interval, 1.27–2.13). The risk of cancer mortality associated with PPDM (versus T2DM) was significantly higher in women than in men (p for interaction = 0.003). This sex difference in cancer mortality risk was also significant in the comparison between PPDM and T1DM (p for interaction = 0.006). Adults of both sexes with PPDM had the lowest remaining life expectancy (in comparison with T2DM or T1DM) up to 64 years of age.

Conclusions

People with PPDM have a higher risk of cancer mortality compared with those with T2DM or T1DM. This is especially pronounced in women. Young and middle-aged adults with PPDM have a lower life expectancy compared with their counterparts with T2DM or T1DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Xiao AY, Tan ML, Wu LM et al. (2016) Global incidence and mortality of pancreatic diseases: a systematic review, meta-analysis, and meta-regression of population-based cohort studies. Lancet Gastroenterol Hepatol 1(1):45–55. https://doi.org/10.1016/S2468-1253(16)30004-8

    Article  PubMed  Google Scholar 

  2. Bharmal SH, Cho J, Alarcon Ramos GC et al. (2020) Trajectories of glycaemia following acute pancreatitis: a prospective longitudinal cohort study with 24 months follow-up. J Gastroenterol 55(8):775–788. https://doi.org/10.1007/s00535-020-01682-y

    Article  PubMed  Google Scholar 

  3. Petrov MS, Yadav D (2019) Global epidemiology and holistic prevention of pancreatitis. Nat Rev Gastroenterol Hepatol 16(3):175–184. https://doi.org/10.1038/s41575-018-0087-5

    Article  PubMed  PubMed Central  Google Scholar 

  4. Woodmansey C, McGovern AP, McCullough KA et al. (2017) Incidence, demographics, and clinical characteristics of diabetes of the exocrine pancreas (type 3c): a retrospective cohort study. Diabetes Care 40(11):1486–1493. https://doi.org/10.2337/dc17-0542

    Article  PubMed  Google Scholar 

  5. Cho J, Petrov MS (2020) Pancreatitis, pancreatic cancer, and their metabolic sequelae: projected burden to 2050. Clin Transl Gastroenterol 11(11):e00251. https://doi.org/10.14309/ctg.0000000000000251

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cho J, Scragg R, Pandol SJ, Goodarzi MO, Petrov MS (2019) Antidiabetic medications and mortality risk in individuals with pancreatic cancer-related diabetes and postpancreatitis diabetes: a nationwide cohort study. Diabetes Care 42(9):1675–1683. https://doi.org/10.2337/dc19-0145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cho J, Scragg R, Petrov MS (2019) Risk of mortality and hospitalization after post-pancreatitis diabetes mellitus vs type 2 diabetes mellitus: a population-based matched cohort study. Am J Gastroenterol 114(5):804–812. https://doi.org/10.14309/ajg.0000000000000225

    Article  PubMed  Google Scholar 

  8. Xu G, You D, Wong L et al. (2019) Risk of all-cause and CHD mortality in women versus men with type 2 diabetes: a systematic review and meta-analysis. Eur J Endocrinol 180(4):243–255. https://doi.org/10.1530/eje-18-0792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huxley RR, Peters SA, Mishra GD, Woodward M (2015) Risk of all-cause mortality and vascular events in women versus men with type 1 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endo 3(3):198–206. https://doi.org/10.1016/s2213-8587(14)70248-7

    Article  Google Scholar 

  10. Zoungas S, Woodward M, Li Q et al. (2014) Impact of age, age at diagnosis and duration of diabetes on the risk of macrovascular and microvascular complications and death in type 2 diabetes. Diabetologia 57(12):2465–2474. https://doi.org/10.1007/s00125-014-3369-7

    Article  PubMed  Google Scholar 

  11. Sattar N, Rawshani A, Franzén Se DK, Eliasson B, Gudbjörnsdottir S (2019) Age at diagnosis of type 2 diabetes mellitus and associations with cardiovascular and mortality risks. Circulation 139(19):2228–2237. https://doi.org/10.1161/circulationaha.118.037885

    Article  PubMed  Google Scholar 

  12. Rawshani A, Sattar N, Franzén S et al. (2018) Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: a nationwide, register-based cohort study. Lancet 392(10146):477–486. https://doi.org/10.1016/s0140-6736(18)31506-x

    Article  PubMed  PubMed Central  Google Scholar 

  13. Petrov MS (2021) Post-pancreatitis diabetes mellitus: prime time for secondary disease. Eur J Endocrinol. https://doi.org/10.1530/EJE-20-0468 (Epub ahead of print)

    Article  PubMed  Google Scholar 

  14. Petrov MS, Basina M (2021) ​Diagnosing and classifying diabetes in diseases of the exocrine pancreas. Eur J Endocrinol. https://doi.org/10.1530/EJE-20-0974 (Epub ahead of print)

    Article  PubMed  Google Scholar 

  15. Shen HN, Yang CC, Chang YH, Lu CL, Li CY (2015) Risk of diabetes mellitus after first-attack acute pancreatitis: a national population-based study. Am J Gastroenterol 110(12):1698–1706. https://doi.org/10.1038/ajg.2015.356

    Article  PubMed  Google Scholar 

  16. The Emerging Risk Factors Collaboration (2011) Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med 364(9):829–841. https://doi.org/10.1056/NEJMoa1008862

    Article  PubMed Central  Google Scholar 

  17. Huo L, Harding JL, Peeters A, Shaw JE, Magliano DJ (2016) Life expectancy of type 1 diabetic patients during 1997–2010: a national Australian registry-based cohort study. Diabetologia 59(6):1177–1185. https://doi.org/10.1007/s00125-015-3857-4

    Article  PubMed  Google Scholar 

  18. Cho J, Walia M, Scragg R, Petrov MS (2019) Frequency and risk factors for mental disorders following pancreatitis: a nationwide cohort study. Curr Med Res Opin 35(7):1157–1164. https://doi.org/10.1080/03007995.2018.1560748

    Article  PubMed  Google Scholar 

  19. Cho J, Scragg R, Petrov MS (2020) Use of insulin and the risk of progression of pancreatitis: a population-based cohort study. Clin Pharmacol Ther 107(3):580–587. https://doi.org/10.1002/cpt.1644

    Article  CAS  PubMed  Google Scholar 

  20. Quan H, Sundararajan V, Halfon P et al (2005) Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care 43(11):1130–1139. https://doi.org/10.1097/01.mlr.0000182534.19832.83

    Article  PubMed  Google Scholar 

  21. Altman DG, Bland JM (2003) Interaction revisited: the difference between two estimates. BMJ 326(7382):219. https://doi.org/10.1136/bmj.326.7382.219

    Article  PubMed  PubMed Central  Google Scholar 

  22. Eayres D, Williams E (2004) Evaluation of methodologies for small area life expectancy estimation. J Epidemiol Commun H 58(3):243–249

    Article  CAS  Google Scholar 

  23. Schanzer D, Antoniou T, Kwong J, Timmerman K, Yan P (2018) Empirical estimation of life expectancy from a linked health database of adults who entered care for HIV. PLoS ONE 13(4):e0195031

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chiang CL (1968) The life table and its construction. Introduction to stochastic processes in biostatistics. John Wiley & Sons, New York, pp 189–214

    Google Scholar 

  25. SAS Institute Inc. (2013) The LOESS procedure. In: SAS/STAT® 13.1 user’s guide. SAS Institute Inc., Cary, NC

  26. Humphrey LL, Deffebach M, Pappas M et al. (2013) Screening for lung cancer with low-dose computed tomography: a systematic review to update the US preventive services task force recommendation. Ann Intern Med 159(6):411–420. https://doi.org/10.7326/0003-4819-159-6-201309170-00690

    Article  PubMed  Google Scholar 

  27. Lin JS, Piper MA, Perdue LA et al. (2016) Screening for colorectal cancer: updated evidence report and systematic review for the US preventive services task force. JAMA 315(23):2576–2594. https://doi.org/10.1001/jama.2016.3332

    Article  CAS  PubMed  Google Scholar 

  28. Aslanian HR, Lee JH, Canto MI (2020) AGA clinical practice update on pancreas cancer screening in high-risk individuals: expert review. Gastroenterology 159(1):358–362. https://doi.org/10.1053/j.gastro.2020.03.088

    Article  CAS  PubMed  Google Scholar 

  29. Cho J, Scragg R, Petrov MS (2020) Postpancreatitis diabetes confers higher risk for pancreatic cancer than type 2 diabetes: results from a nationwide cancer registry. Diabetes Care 43(9):2106–2112. https://doi.org/10.2337/dc20-0207

    Article  PubMed  Google Scholar 

  30. Sreedhar UL, DeSouza SV, Park B, Petrov MS (2020) A systematic review of intra-pancreatic fat deposition and pancreatic carcinogenesis. J Gastrointest Surg 24(11):2560–2569. https://doi.org/10.1007/s11605-019-04417-4

    Article  PubMed  Google Scholar 

  31. Joshu CE, Prizment AE, Dluzniewski PJ et al. (2012) Glycated hemoglobin and cancer incidence and mortality in the atherosclerosis in communities (ARIC) study, 1990–2006. Int J Cancer 131(7):1667–1677. https://doi.org/10.1002/ijc.27394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stattin P, Björ O, Ferrari P et al. (2007) Prospective study of hyperglycemia and cancer risk. Diabetes Care 30(3):561–567. https://doi.org/10.2337/dc06-0922

    Article  PubMed  Google Scholar 

  33. Stocks T, Rapp K, Bjørge T et al (2009) Blood glucose and risk of incident and fatal cancer in the metabolic syndrome and cancer project (ME-CAN): analysis of six prospective cohorts. PLOS Medicine 6(12):e1000201. https://doi.org/10.1371/journal.pmed.1000201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dickman R, Wainstein J, Glezerman M, Niv Y, Boaz M (2014) Gender aspects suggestive of gastroparesis in patients with diabetes mellitus: a cross-sectional survey. BMC Gastroenterol 14(1):34. https://doi.org/10.1186/1471-230X-14-34

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gold-Smith FD, Chand SK, Petrov MS (2018) Post-pancreatitis diabetes mellitus: towards understanding the role of gastrointestinal motility. Minerva Gastroenterol Dietol 64(4):363–375. https://doi.org/10.23736/s1121-421x.18.02507-2

    Article  PubMed  Google Scholar 

  36. Jung HK, Choung RS, Locke GR et al. (2009) The incidence, prevalence, and outcomes of patients with gastroparesis in Olmsted county, Minnesota, from 1996 to 2006. Gastroenterology 136(4):1225–1233. https://doi.org/10.1053/j.gastro.2008.12.047

    Article  PubMed  Google Scholar 

  37. Futagawa Y, Kanehira M, Furukawa K et al. (2017) Impact of delayed gastric emptying after pancreaticoduodenectomy on survival. J Hepatobiliary Pancreat Sci 24(8):466–474. https://doi.org/10.1002/jhbp.482

    Article  PubMed  Google Scholar 

  38. Jiang Y, Greenwood-Van Meerveld B, Johnson AC, Travagli RA (2019) Role of estrogen and stress on the brain-gut axis. Am J Physiol Gastrointest Liver Physiol 317(2):G203–G209. https://doi.org/10.1152/ajpgi.00144.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gerards MC, van der Velden DL, Baars JW et al. (2017) Impact of hyperglycemia on the efficacy of chemotherapy-a systematic review of preclinical studies. Crit Rev Oncol Hemat 113:235–241. https://doi.org/10.1016/j.critrevonc.2017.03.007

    Article  Google Scholar 

  40. Davidson M, Wagner AD, Kouvelakis K et al. (2019) Influence of sex on chemotherapy efficacy and toxicity in oesophagogastric cancer: a pooled analysis of four randomised trials. Eur J Cancer 121:40–47. https://doi.org/10.1016/j.ejca.2019.08.010

    Article  CAS  PubMed  Google Scholar 

  41. Cristina V, Mahachie J, Mauer M et al. (2018) Association of patient sex with chemotherapy-related toxic effects: a retrospective analysis of the PETACC-3 trial conducted by the EORTC gastrointestinal group. JAMA Oncol 4(7):1003–1006. https://doi.org/10.1001/jamaoncol.2018.1080

    Article  PubMed  PubMed Central  Google Scholar 

  42. Masamune A, Kume K, Shimosegawa T (2013) Sex and age differences in alcoholic pancreatitis in Japan: a multicenter nationwide survey. Pancreas 42(4):578–583. https://doi.org/10.1097/MPA.0b013e31827a02bc

    Article  PubMed  Google Scholar 

  43. Parr CL, Batty GD, Lam TH et al. (2010) Body-mass index and cancer mortality in the Asia-Pacific cohort studies collaboration: pooled analyses of 424,519 participants. Lancet Oncol 11(8):741–752. https://doi.org/10.1016/s1470-2045(10)70141-8

    Article  PubMed  PubMed Central  Google Scholar 

  44. Global BMI Mortality Collaboration, Di Angelantonio E, Bhupathiraju S et al. (2016) Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet 388(10046):776–786. https://doi.org/10.1016/s0140-6736(16)30175-1

    Article  CAS  PubMed  Google Scholar 

  45. Corbin KD, Driscoll KA, Pratley RE et al (2018) Obesity in type 1 diabetes: pathophysiology, clinical impact, and mechanisms. Endocr Rev 39(5):629–663. https://doi.org/10.1210/er.2017-00191

    Article  PubMed  Google Scholar 

  46. Huo L, Magliano DJ, Rancière F et al. (2018) Impact of age at diagnosis and duration of type 2 diabetes on mortality in Australia 1997–2011. Diabetologia 61(5):1055–1063. https://doi.org/10.1007/s00125-018-4544-z

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This study was part of the Clinical and epidemiOlogical inveStigations in Metabolism, nutritiOn, and pancreatic diseaseS (COSMOS) program. COSMOS is supported, in part, by the Royal Society of New Zealand (Rutherford Discovery Fellowship to Professor Max Petrov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim S. Petrov.

Ethics declarations

Conflict of Interest

The authors have nothing to disclose.

Ethical approval

Ethics approval was waived as per the New Zealand Ministry of Health guidelines.

Informed consent

For this type of study formal consent was not required.

Additional information

Managed by Massimo Federici.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 106 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, J., Pandol, S.J. & Petrov, M.S. Risk of cause-specific death, its sex and age differences, and life expectancy in post-pancreatitis diabetes mellitus. Acta Diabetol 58, 797–807 (2021). https://doi.org/10.1007/s00592-021-01683-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-021-01683-0

Navigation