Skip to main content

Advertisement

Log in

Association between Osteoprotegerin and Charcot Neuroarthropathy: a systematic review

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

Osteoprotegerin (OPG) has been associated with Charcot Neuroarthropathy (CN); however, three studied OPG polymorphisms (1181C > G, 245A > C and 950 T > C) have yielded conflicting results. Therefore, this meta-analysis was conducted to determine the difference in serum OPG concentrations between healthy controls and diabetics with and without CN and the effect OPG polymorphisms have on CN development.

Methods

PubMed, LILAC, SCOPUS, and EBSCO databases and retrieved publications’ bibliographies were searched for studies that examined for OPG and CN. Depending on the heterogeneity, fixed or random effects were used to calculate the pooled odds ratio (OR) or standard difference in means (SDM) with 95% confidence intervals (95%CI) for 5 genetic models (heterozygous, homozygous, dominant, recessive, and allelic) and serum concentrations, respectively.

Results

Seven publications (12 studies) demonstrated that serum OPG concentrations were more elevated in subjects with CN (SDM = 0.719, 95%CI = 0.555–0.883, p < 0.001). When CN was compared to healthy controls or diabetics, the difference was more prominent for healthy controls (SDM = 1.043, 95%CI = 0.676–1.409, p < 0.001) than diabetics (SDM = 0.639, 95%CI = 0.456–0.821, p < 0.001) and the SDM difference was significant (p = 0.013). Using 6 publications (9 studies), neither the 1181C > G or the 950 T > C polymorphisms showed any significant associations for any genetic model. For the 245A > C polymorphism, only the homozygous genetic model showed a significant association between the polymorphism and CN (OR = 2.850, 95%CI: 1.051–7.729, p = 0.040).

Conclusions

Here, we determined a potential correlation between the CN and serum OPG concentrations and that only the CC genotype of the 245A > C polymorphism showed an increased risk of developing CN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Williams R, SAR C (2019) IDF diabetes atlas. Available from: https://www.diabetesatlas.org/upload/resources/2019/IDF_Atlas_9th_Edition_2019.pdf.

  2. Zhao HM, Diao JY, Liang XJ et al (2017) Pathogenesis and potential relative risk factors of diabetic neuropathic osteoarthropathy. J Orthop Surg Res 12(1):142. https://doi.org/10.1186/s13018-017-0634-8

    Article  PubMed  PubMed Central  Google Scholar 

  3. Molines L, Darmon P, Raccah D (2010) Charcot’s foot: newest findings on its pathophysiology, diagnosis and treatment. Diabetes Metab 36(4):251–255. https://doi.org/10.1016/j.diabet.2010.04.002

    Article  CAS  PubMed  Google Scholar 

  4. Jeffcoate WJ, Game F, Cavanagh PR (2005) The role of proinflammatory cytokines in the cause of neuropathic osteoarthropathy (acute Charcot foot) in diabetes. Lancet 366(9502):2058–2061. https://doi.org/10.1016/s0140-6736(05)67029-8

    Article  CAS  PubMed  Google Scholar 

  5. Ndip A, Williams A, Jude EB et al (2011) The RANKL/RANK/OPG signaling pathway mediates medial arterial calcification in diabetic Charcot neuroarthropathy. Diabetes 60(8):2187–2196. https://doi.org/10.2337/db10-1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bruhn-Olszewska B, Korzon-Burakowska A, Węgrzyn G et al (2017) Prevalence of polymorphisms in OPG, RANKL and RANK as potential markers for Charcot arthropathy development. Sci Rep 7(1):501. https://doi.org/10.1038/s41598-017-00563-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mrozikiewicz-Rakowska B, Nehring P, Szymański K et al (2018) Selected RANKL/RANK/OPG system genetic variants in diabetic foot patients. J Diabetes Metab Disord 17(2):287–296. https://doi.org/10.1007/s40200-018-0372-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pitocco D, Zelano G, Gioffrè G et al (2009) Association between osteoprotegerin G1181C and T245G polymorphisms and diabetic charcot neuroarthropathy: a case-control study. Diabetes Care 32(9):1694–1697. https://doi.org/10.2337/dc09-0243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jansen RB, Christensen TM, Bülow J et al (2018) Bone mineral density and markers of bone turnover and inflammation in diabetes patients with or without a Charcot foot. An 8.5-year prospective case-control study. J Diabetes Complications 32(2):164–170. https://doi.org/10.1016/j.jdiacomp.2017.11.004

    Article  PubMed  Google Scholar 

  10. Morinaga T, Nakagawa N, Yasuda H et al (1998) Cloning and characterization of the gene encoding human osteoprotegerin/osteoclastogenesis-inhibitory factor. Eur J Biochem 254(3):685–691. https://doi.org/10.1046/j.1432-1327.1998.2540685.x

    Article  CAS  PubMed  Google Scholar 

  11. Song Y, Du Z-w, Yang Q-w et al (2017) Association of genes variants in RANKL/RANK/OPG signaling pathway with the development of osteonecrosis of the femoral head in Chinese population. Int J Med Sci 14(7):690–697. https://doi.org/10.7150/ijms.19124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Miramontes-González JP, Usategui-Martín R, Pérez de Isla L et al (2019) VEGFR2 and OPG genes modify the risk of subclinical coronary atherosclerosis in patients with familial hypercholesterolemia. Atherosclerosis 285:17–22. https://doi.org/10.1016/j.atherosclerosis.2019.03.019

    Article  CAS  PubMed  Google Scholar 

  13. Hampton BM, Schwartz SG, Brantley MA Jr et al (2015) Update on genetics and diabetic retinopathy. Clin Ophthalmol 9:2175–2193. https://doi.org/10.2147/opth.S94508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Korzon-Burakowska A, Jakóbkiewicz-Banecka J, Fiedosiuk A et al (2012) Osteoprotegerin gene polymorphism in diabetic Charcot neuroarthropathy. Diabet Med 29(6):771–775. https://doi.org/10.1111/j.1464-5491.2011.03442.x

    Article  CAS  PubMed  Google Scholar 

  15. Nehring P, Mrozikiewicz-Rakowska B, Sobczyk-Kopcioł A et al (2013) Osteoprotegerin gene rs2073617 and rs3134069 polymorphisms in type diabetes patients and sex-specific rs2073618 polymorphism as a risk factor for diabetic foot. Pol Arch Med Wewn 123(4):176–82

    CAS  PubMed  Google Scholar 

  16. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25(9):603–605. https://doi.org/10.1007/s10654-010-9491-z

    Article  PubMed  Google Scholar 

  17. Tecilazich F, Dinh T, Lyons TE et al (2013) Postexercise phosphocreatine recovery, an index of mitochondrial oxidative phosphorylation, is reduced in diabetic patients with lower extremity complications. J Vasc Surg 57(4):997–1005. https://doi.org/10.1016/j.jvs.2012.10.011

    Article  PubMed  PubMed Central  Google Scholar 

  18. Çağlar S, Çağlar A, Pilten S et al (2018) Osteoprotegerin and 25-hydroxy vitamin D levels in patients with diabetic foot. Eklem Hastalik Cerrahisi 29(3):170–175. https://doi.org/10.5606/ehc.2018.60797

    Article  PubMed  Google Scholar 

  19. Güldiken S, Taskıran B, Demir AM et al (2013) Role of soluble Fas/Fas ligand pathway and Osteoprotegerin in diabetic foot ulceration. Ortadogu Medica J 5(4):204–209

    Google Scholar 

  20. Petrova NL, Dew TK, Musto RL et al (2015) Inflammatory and bone turnover markers in a cross-sectional and prospective study of acute Charcot osteoarthropathy. Diabet Med 32(2):267–273. https://doi.org/10.1111/dme.12590

    Article  CAS  PubMed  Google Scholar 

  21. Abdul-Saheb YS, Rafaa TA, Suleiman AA-JJ (2019) Genetic Polymorphism in TNF Receptor and Osteoprotegerin Genes associated with the Incidence of Diabetic Foot. Res J Biotech 14(Special Issue I):256–258.

    Google Scholar 

  22. Kudlacek S, Schneider B, Woloszczuk W et al (2003) Serum levels of osteoprotegerin increase with age in a healthy adult population. Bone 32(6):681–686. https://doi.org/10.1016/s8756-3282(03)00090-5

    Article  CAS  PubMed  Google Scholar 

  23. Zhang P, Lu J, Jing Y et al (2017) Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis (†). Ann Med 49(2):106–116. https://doi.org/10.1080/07853890.2016.1231932

    Article  PubMed  Google Scholar 

  24. Xia N, Morteza A, Yang F et al (2019) Review of the role of cigarette smoking in diabetic foot. J Diabetes Investig 10(2):202–215. https://doi.org/10.1111/jdi.12952

    Article  PubMed  Google Scholar 

  25. Frykberg RG, Belczyk R (2008) Epidemiology of the Charcot foot. Clin Podiatr Med Surg 25(1):17–28. https://doi.org/10.1016/j.cpm.2007.10.001

    Article  PubMed  Google Scholar 

  26. Secchiero P, Corallini F, Pandolfi A et al (2006) An increased osteoprotegerin serum release characterizes the early onset of diabetes mellitus and may contribute to endothelial cell dysfunction. Am J Pathol 169(6):2236–2244. https://doi.org/10.2353/ajpath.2006.060398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Knudsen ST, Foss CH, Poulsen PL et al (2003) Increased plasma concentrations of osteoprotegerin in type 2 diabetic patients with microvascular complications. Eur J Endocrinol 149(1):39–42. https://doi.org/10.1530/eje.0.1490039

    Article  CAS  PubMed  Google Scholar 

  28. Duan P, Yang M, Wei M et al (2017) Serum Osteoprotegerin Is a potential biomarker of insulin resistance in chinese postmenopausal women with prediabetes and type 2 diabetes. Int J Endocrinol 2017:8724869. https://doi.org/10.1155/2017/8724869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ahmad Fauzi A (2016) Risk factors of diabetic foot Charcot arthropathy: a case-control study at a Malaysian tertiary care centre. Singapore Med J 57(4):198–203

    Article  Google Scholar 

  30. Rasmussen LM, Tarnow L, Hansen TK et al (2006) Plasma osteoprotegerin levels are associated with glycaemic status, systolic blood pressure, kidney function and cardiovascular morbidity in type 1 diabetic patients. Eur J Endocrinol 154(1):75–81. https://doi.org/10.1530/eje.1.02049

    Article  CAS  PubMed  Google Scholar 

  31. Rogers LC, Frykberg RG, Armstrong DG et al (2011) The Charcot foot in diabetes. Diabetes Care 34(9):2123–2129. https://doi.org/10.2337/dc11-0844

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jeffcoate WJ, Rasmussen LM, Hofbauer LC et al (2009) Medial arterial calcification in diabetes and its relationship to neuropathy. Diabetologia 52(12):2478–2488. https://doi.org/10.1007/s00125-009-1521-6

    Article  CAS  PubMed  Google Scholar 

  33. Kloska A, Korzon-Burakowska A, Malinowska M et al (2020) The role of genetic factors and monocyte-to-osteoclast differentiation in the pathogenesis of Charcot neuroarthropathy. Diabetes Res Clin Pract 166:e108337. https://doi.org/10.1016/j.diabres.2020.108337

    Article  CAS  Google Scholar 

  34. Hofbauer LC, Schoppet M (2004) Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA 292(4):490–495. https://doi.org/10.1001/jama.292.4.490

    Article  CAS  PubMed  Google Scholar 

  35. Bjerre M (2013) Osteoprotegerin (OPG) as a biomarker for diabetic cardiovascular complications. Springerplus 2(1):658. https://doi.org/10.1186/2193-1801-2-658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pérez de Ciriza C, Lawrie A, Varo N (2015) Osteoprotegerin in cardiometabolic disorders. Int J Endocrinol 2015:e564934. https://doi.org/10.1155/2015/564934

    Article  Google Scholar 

  37. Simonet W, Lacey D, Dunstan C et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89(2):309–319. https://doi.org/10.1155/2015/564934

    Article  CAS  PubMed  Google Scholar 

  38. Durgia H, Sahoo J, Kamalanathan S et al (2018) Role of bisphosphonates in the management of acute Charcot foot. World J Diab 9(7):115. https://doi.org/10.4239/wjd.v9.i7.115

    Article  Google Scholar 

  39. Viereck V, Emons G, Lauck V et al (2002) Bisphosphonates pamidronate and zoledronic acid stimulate osteoprotegerin production by primary human osteoblasts. Biochem Biophys Res Commun 291(3):680–686. https://doi.org/10.1006/bbrc.2002.6510

    Article  CAS  PubMed  Google Scholar 

  40. Napoli N, Pannacciulli N, Vittinghoff E et al (2018) Effect of denosumab on fasting glucose in women with diabetes or prediabetes from the FREEDOM trial. Diabetes/Metabolism Res Rev 34(4):e2991

    Article  Google Scholar 

  41. Abe I, Ochi K, Takashi Y et al (2019) Effect of denosumab, a human monoclonal antibody of receptor activator of nuclear factor kappa-B ligand (RANKL), upon glycemic and metabolic parameters: effect of denosumab on glycemic parameters. Medicine. https://doi.org/10.1097/MD.0000000000018067

    Article  PubMed  PubMed Central  Google Scholar 

  42. American Diabetes Association. Statistics about diabetes overall numbers 2020 [cited 2020 Jun 05]. Available from: https://www.diabetes.org/resources/statistics/statistics-about-diabetes

  43. Langdahl BL, Carstens M, Stenkjaer L et al (2002) Polymorphisms in the osteoprotegerin gene are associated with osteoporotic fractures. J Bone Miner Res 17(7):1245–1255. https://doi.org/10.1359/jbmr.2002.17.7.1245

    Article  CAS  PubMed  Google Scholar 

  44. Wuyts W, Van Wesenbeeck L, Morales-Piga A et al (2001) Evaluation of the role of RANK and OPG genes in Paget’s disease of bone. Bone 28(1):104–107. https://doi.org/10.1016/s8756-3282(00)00411-7

    Article  CAS  PubMed  Google Scholar 

  45. Guo C, Hu F, Zhang S et al (2013) Association between osteoprotegerin gene polymorphisms and cardiovascular disease in type 2 diabetic patients. Genet Mol Biol 36:177–182

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Mtro. Ricardo Villegas Tovar, Coordinator of Scientific Production and International Visibility, BUAP.

Funding

This study was supported by grants from the Programa para el Desarrollo Profesional Docente (to CA-160 FACMED) and the Vicerrectorıa de Investigacion, Benemerita Universidad Autonoma de Puebla, Mexico (to TORE-SAL19-G, PEFR-SAL19-G, and GOMM-SAL18-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Elba Gonzalez-Mejia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with humans or animals performed by any of the authors.

Informed consent

In this article, no direct patient care was involved.

Additional information

Managed by Massimo Federici.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 953 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochoa-Précoma, R., Pacheco-Soto, B.T., Porchia, L.M. et al. Association between Osteoprotegerin and Charcot Neuroarthropathy: a systematic review. Acta Diabetol 58, 475–484 (2021). https://doi.org/10.1007/s00592-020-01638-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-020-01638-x

Keywords

Navigation