Skip to main content

Advertisement

Log in

Islet amyloid polypeptide response to maximal hyperglycemia and arginine is altered in impaired glucose tolerance and type 2 diabetes mellitus

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

Pancreatic islet amyloid deposition is a characteristic feature of type 2 diabetes mellitus (T2DM). Islet amyloid polypeptide (IAPP) is co-secreted with insulin, but its secretion profile and relationship to insulin and C-peptide in response to glucose and non-glucose stimuli has not been clearly defined.

Methods

Forty subjects (13 NGT, 12 IGT and 15 T2DM) participated in an OGTT and two-step hyperglycemic (225 and 400 mg/dl) clamp (80 min/step) followed by an IV arginine bolus. Acute insulin (AIR), C-peptide (ACPR) and IAPP (AIAR) responses during each hyperglycemic step and following arginine (AIRArg) were assessed.

Results

AIR and ACPR during both hyperglycemic steps and after arginine progressively decreased from NGT to IGT to T2DM. Fasting IAPP concentrations were higher in T2DM compared to NGT and IGT subjects. The acute IAPP0–10 was markedly decreased only in T2DM, while the acute IAPP80–90 response during the second step (80–160 min) of hyperglycemic clamp and in response to arginine was markedly impaired in both IGT and T2DM. The ratio of IAPP/C-peptide during the first (225 mg/dl) and second step (400 mg/dl), and in response to arginine, was decreased in T2DM versus both NGT and IGT (p < 0.01). The acute IAPP0–10 correlated with ACPR0–10 (r = 0.665, p < 0.001) and AIR0–10 (r = 0.543, p < 0.001).

Conclusions

Basal IAPP secretion is higher in T2DM and IGT versus NGT but is reduced in response to hyperglycemia and arginine. The IAPP/C-peptide ratio is reduced with prolonged and more severe hyperglycemia in T2DM individuals.

Clinical trial registration

NCT00845182.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. DeFronzo RA, Banerji MA, Bray GA et al (2010) Determinants of glucose tolerance in impaired glucose tolerance at baseline in the actos now for prevention of diabetes (ACT NOW) study. Diabetologia 53(3):435–445

    Article  CAS  PubMed  Google Scholar 

  2. Gastaldelli A, Ferrannini E, Miyazaki Y, Matsuda M, DeFronzo RA (2004) Beta-cell dysfunction and glucose intolerance: results from the San Antonio metabolism (SAM) study. Diabetologia 47(1):31–39

    Article  CAS  PubMed  Google Scholar 

  3. Tripathy D, Carlsson M, Almgren P et al (2000) Insulin secretion and insulin sensitivity in relation to glucose tolerance: lessons from the botnia study. Diabetes 49(6):975–980

    Article  CAS  PubMed  Google Scholar 

  4. Tripathy D, Eriksson KF, Orho-Melander M, Fredriksson J, Ahlqvist G, Groop L (2004) Parallel manifestation of insulin resistance and beta cell decompensation is compatible with a common defect in type 2 diabetes. Diabetologia 47(5):782–793

    Article  CAS  PubMed  Google Scholar 

  5. Cooper GJ, Willis AC, Clark A, Turner RC, Sim RB, Reid KB (1987) Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci USA 84(23):8628–8632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Westermark P, Wernstedt C, O’Brien TD, Hayden DW, Johnson KH (1987) Islet amyloid in type 2 human diabetes mellitus and adult diabetic cats contains a novel putative polypeptide hormone. Am J Pathol 127(3):414–417

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Larsson H, Ahren B (1995) Effects of arginine on the secretion of insulin and islet amyloid polypeptide in humans. Pancreas 11(2):201–205

    Article  CAS  PubMed  Google Scholar 

  8. Guardado-Mendoza R, Davalli AM, Chavez AO et al (2009) Pancreatic islet amyloidosis, beta-cell apoptosis, and alpha-cell proliferation are determinants of islet remodeling in type-2 diabetic baboons. Proc Natl Acad Sci USA 106(33):13992–13997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jurgens CA, Toukatly MN, Fligner CL et al (2011) Beta-cell loss and beta-cell apoptosis in human type 2 diabetes are related to islet amyloid deposition. Am J Pathol 178(6):2632–2640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Clark A, Saad MF, Nezzer T et al (1990) Islet amyloid polypeptide in diabetic and non-diabetic Pima Indians. Diabetologia 33(5):285–289

    Article  CAS  PubMed  Google Scholar 

  11. Rocken C, Linke RP, Saeger W (1992) Immunohistology of islet amyloid polypeptide in diabetes mellitus: semi-quantitative studies in a post-mortem series. Virchows Arch A Pathol Anat Histopathol 421(4):339–344

    Article  CAS  PubMed  Google Scholar 

  12. Sempoux C, Guiot Y, Dubois D, Moulin P, Rahier J (2001) Human type 2 diabetes: morphological evidence for abnormal beta-cell function. Diabetes 50(Suppl 1):S172–S177

    Article  CAS  PubMed  Google Scholar 

  13. Zhao HL, Lai FM, Tong PC et al (2003) Prevalence and clinicopathological characteristics of islet amyloid in chinese patients with type 2 diabetes. Diabetes 52(11):2759–2766

    Article  CAS  PubMed  Google Scholar 

  14. Butler AE, Janson J, Soeller WC, Butler PC (2003) Increased beta-cell apoptosis prevents adaptive increase in beta-cell mass in mouse model of type 2 diabetes: evidence for role of islet amyloid formation rather than direct action of amyloid. Diabetes 52(9):2304–2314

    Article  CAS  PubMed  Google Scholar 

  15. Huang CJ, Lin CY, Haataja L et al (2007) High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress mediated beta-cell apoptosis, a characteristic of humans with type 2 but not type 1 diabetes. Diabetes 56(8):2016–2027

    Article  CAS  PubMed  Google Scholar 

  16. Kloppel G, Lohr M, Habich K, Oberholzer M, Heitz PU (1985) Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited. Surv Synth Pathol Res 4(2):110–125

    CAS  PubMed  Google Scholar 

  17. Matveyenko AV, Gurlo T, Daval M, Butler AE, Butler PC (2009) Successful versus failed adaptation to high-fat diet-induced insulin resistance: the role of IAPP-induced beta-cell endoplasmic reticulum stress. Diabetes 58(4):906–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mirzabeckov TALM, Kagan BL (1996) Pore formation by the cytotoxic islet amyloid polypeptide amylin. J Biol Chem 271:1988–1992

    Article  Google Scholar 

  19. Ritzel RA, Meier JJ, Lin CY, Veldhuis JD, Butler PC (2007) Human islet amyloid polypeptide oligomers disrupt cell coupling, induce apoptosis, and impair insulin secretion in isolated human islets. Diabetes 56(1):65–71

    Article  CAS  PubMed  Google Scholar 

  20. Haataja L, Gurlo T, Huang CJ, Butler PC (2008) Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr Rev 29(3):303–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Enoki S, Mitsukawa T, Takemura J et al (1992) Plasma islet amyloid polypeptide levels in obesity, impaired glucose tolerance and non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract 15(1):97–102

    Article  CAS  PubMed  Google Scholar 

  22. Kahn SE, Verchere CB, Andrikopoulos S et al (1998) Reduced amylin release is a characteristic of impaired glucose tolerance and type 2 diabetes in Japanese Americans. Diabetes 47(4):640–645

    Article  CAS  PubMed  Google Scholar 

  23. Sanke T, Hanabusa T, Nakano Y et al (1991) Plasma islet amyloid polypeptide (Amylin) levels and their responses to oral glucose in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 34(2):129–132

    Article  CAS  PubMed  Google Scholar 

  24. MacNamara CM, Barrow BA, Manley SE, Levy JC, Clark A, Turner RC (2000) Parallel changes of proinsulin and islet amyloid polypeptide in glucose intolerance. Diabetes Res Clin Pract 50(2):117–126

    Article  CAS  PubMed  Google Scholar 

  25. Knowles NG, Landchild MA, Fujimoto WY, Kahn SE (2002) Insulin and amylin release are both diminished in first-degree relatives of subjects with type 2 diabetes. Diabetes Care 25(2):292–297

    Article  CAS  PubMed  Google Scholar 

  26. Makimattila S, Fineman MS, Yki-Jarvinen H (2000) Deficiency of total and nonglycosylated amylin in plasma characterizes subjects with impaired glucose tolerance and type 2 diabetes. J Clin Endocrinol Metab 85(8):2822–2827

    CAS  PubMed  Google Scholar 

  27. Duckworth WC, Bennett RG, Hamel FG (1998) Insulin degradation: progress and potential. Endocr Rev 19(5):608–624

    CAS  PubMed  Google Scholar 

  28. Ward WK, Bolgiano DC, McKnight B, Halter JB, Porte D Jr (1984) Diminished B cell secretory capacity in patients with noninsulin-dependent diabetes mellitus. J Clin Invest 74(4):1318–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Matsuda M, DeFronzo RA (1999) Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22(9):1462–1470

    Article  CAS  PubMed  Google Scholar 

  30. Badman MK, Shennan KI, Jermany JL, Docherty K, Clark A (1996) Processing of pro-islet amyloid polypeptide (proIAPP) by the prohormone convertase PC2. FEBS Lett 378(3):227–231

    Article  CAS  PubMed  Google Scholar 

  31. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52(1):102–110

    Article  CAS  PubMed  Google Scholar 

  32. Higham CE, Hull RL, Lawrie L et al (2000) Processing of synthetic pro-islet amyloid polypeptide (proIAPP) ‘amylin’ by recombinant prohormone convertase enzymes, PC2 and PC3, in vitro. Eur J Biochem 267(16):4998–5004

    Article  CAS  PubMed  Google Scholar 

  33. Hoppener JW, Ahren B, Lips CJ (2000) Islet amyloid and type 2 diabetes mellitus. N Engl J Med 343(6):411–419

    Article  CAS  PubMed  Google Scholar 

  34. Hou X, Ling Z, Quartier E et al (1999) Prolonged exposure of pancreatic beta cells to raised glucose concentrations results in increased cellular content of islet amyloid polypeptide precursors. Diabetologia 42(2):188–194

    Article  CAS  PubMed  Google Scholar 

  35. Marzban L, Rhodes CJ, Steiner DF, Haataja L, Halban PA, Verchere CB (2006) Impaired NH2-terminal processing of human proislet amyloid polypeptide by the prohormone convertase PC2 leads to amyloid formation and cell death. Diabetes 55(8):2192–2201

    Article  CAS  PubMed  Google Scholar 

  36. Marzban L, Trigo-Gonzalez G, Zhu X et al (2004) Role of beta-cell prohormone convertase (PC)1/3 in processing of pro-islet amyloid polypeptide. Diabetes 53(1):141–148

    Article  CAS  PubMed  Google Scholar 

  37. Paulsson JF, Westermark GT (2005) Aberrant processing of human proislet amyloid polypeptide results in increased amyloid formation. Diabetes 54(7):2117–2125

    Article  CAS  PubMed  Google Scholar 

  38. Westermark P, Li ZC, Westermark GT, Leckstrom A, Steiner DF (1996) Effects of beta cell granule components on human islet amyloid polypeptide fibril formation. FEBS Lett 379(3):203–206

    Article  CAS  PubMed  Google Scholar 

  39. Hartter E, Svoboda T, Ludvik B et al (1991) Basal and stimulated plasma levels of pancreatic amylin indicate its co-secretion with insulin in humans. Diabetologia 34(1):52–54

    Article  CAS  PubMed  Google Scholar 

  40. Kahn SE, D’Alessio DA, Schwartz MW et al (1990) Evidence of cosecretion of islet amyloid polypeptide and insulin by beta-cells. Diabetes 39(5):634–638

    Article  CAS  PubMed  Google Scholar 

  41. Abdul-Ghani MA, Matsuda M, Jani R et al (2008) The relationship between fasting hyperglycemia and insulin secretion in subjects with normal or impaired glucose tolerance. Am J Physiol Endocrinol Metab 295(2):E401–E406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Novials A, Sarri Y, Casamitjana R, Rivera F, Gomis R (1993) Regulation of islet amyloid polypeptide in human pancreatic islets. Diabetes 42(10):1514–1519

    Article  CAS  PubMed  Google Scholar 

  43. Tura A, Ludvik B, Nolan JJ, Pacini G, Thomaseth K (2001) Insulin and C-peptide secretion and kinetics in humans: direct and model-based measurements during OGTT. Am J Physiol Endocrinol Metab 281(5):E966–E974

    CAS  PubMed  Google Scholar 

  44. Clodi M, Thomaseth K, Pacini G et al (1998) Distribution and kinetics of amylin in humans. Am J Physiol 274(5 Pt 1):E903–E908

    CAS  PubMed  Google Scholar 

  45. Bassi R, Fiorina P (2011) Impact of islet transplantation on diabetes complications and quality of life. Curr Diabetes Rep 11(5):355–363

    Article  Google Scholar 

  46. Fiorina P, Vergani A, Petrelli A et al (2008) Metabolic and immunological features of the failing islet-transplanted patient. Diabetes Care 31(3):436–438

    Article  CAS  PubMed  Google Scholar 

  47. Polastri L, Galbiati F, Bertuzzi F et al (2002) Secretory defects induced by immunosuppressive agents on human pancreatic beta-cells. Acta Diabetol 39(4):229–233

    Article  CAS  PubMed  Google Scholar 

  48. Vergani A, Fotino C, D’Addio F et al (2013) Effect of the purinergic inhibitor oxidized ATP in a model of islet allograft rejection. Diabetes 62(5):1665–1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the nurses on the Bartter Research Unit (BRU) for their diligent care of our patients and especially James King, R.N. and John Kincade RN for carrying out the hyperglycemic clamp studies. The study was supported by a research grant from Takeda Pharmaceuticals to Devjit Tripathy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devjit Tripathy.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Human and animal rights disclosure

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008 (5).

Informed consent disclosure

Informed consent was obtained from all patients for being included in the study.

Additional information

Managed by Massimo Federici.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guardado-Mendoza, R., Chávez, A.O., Jiménez-Ceja, L.M. et al. Islet amyloid polypeptide response to maximal hyperglycemia and arginine is altered in impaired glucose tolerance and type 2 diabetes mellitus. Acta Diabetol 54, 53–61 (2017). https://doi.org/10.1007/s00592-016-0904-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-016-0904-7

Keywords

Navigation