Skip to main content

Advertisement

Log in

Silencing of activin receptor-like kinase 7 alleviates aortic stiffness in type 2 diabetic rats

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aim

Arterial stiffness is an important feature of diabetic macrovascular complications. Activin receptor-like kinase 7 (ALK7), a member of type I transforming growth factor-β (TGF-β) receptors, is correlated with pathogenic risks of type 2 diabetes mellitus and cardiovascular diseases and may be involved in cardiovascular remodeling. We aimed to investigate whether ALK7 is implicated in diabetes-induced aortic stiffness.

Methods

Type 2 diabetes was induced by high-fat diet and low-dose streptozotocin (STZ; 27.5 mg/kg). Forty rats were separated into four groups: control, diabetes, diabetes with empty virus and diabetes treated with ALK7-shRNA. The metabolic index, ALK 7 expression and aortic stiffness were evaluated. We used gene silencing method to investigate the role of ALK7 in the pathological development.

Results

Diabetic rats showed increased blood glucose, cholesterol, triglyceride levels, severe insulin resistance and ALK7 overexpression. Diabetes enhanced aortic stiffness, as demonstrated by the loss and disruption of elastic fibers as well as by an increase in collagen fibers in the aortic media. ALK7 gene silencing ameliorated metabolic hyperlipidemia and insulin resistance. With ALK7 gene silencing, collagen content, elastin to collagen ratio, as well as collagen I-to-collagen III content ratio in diabetic rats were significantly decreased. Moreover, the phosphorylation level of Smad2/3 was markedly decreased after ALK7 gene silencing.

Conclusions

ALK7 gene silencing has a protective effect on diabetes-induced aortic stiffness, insulin resistance and hyperlipidemia, thus implicating a new potential therapeutic approach to diabetic macrovascular stiffness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bozorgmanesh M, Hadaegh F, Azizi F (2010) Transportability of the updated diabetes prediction model from Atherosclerosis Risk in Communities Study to a Middle Eastern adult population: community-based cohort study. Acta Diabetol 50(2):175–181. doi:10.1007/s00592-010-0241-1

    Article  PubMed  Google Scholar 

  2. Law B, Fowlkes V, Goldsmith JG, Carver W, Goldsmith EC (2012) Diabetes-induced alterations in the extracellular matrix and their impact on myocardial function. Microsc Microanal 18(1):22–34. doi:10.1017/s1431927611012256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Srikanth S, Deedwania P (2011) Primary and secondary prevention strategy for cardiovascular disease in diabetes mellitus. Cardiol Clin 29(1):47–70. doi:10.1016/j.ccl.2010.11.004

    Article  PubMed  Google Scholar 

  4. Salminen M, Kuoppamäki M, Vahlberg T, Räihä I, Irjala K, Kivelä S-L (2011) Metabolic syndrome and vascular risk: a 9-year follow-up among the aged in Finland. Acta Diabetol 48(2):157–165. doi:10.1007/s00592-010-0251-z

    Article  CAS  PubMed  Google Scholar 

  5. Sesti G, Andreozzi F, Fiorentino TV, Mannino GC, Sciacqua A, Marini MA, Perticone F (2014) High circulating irisin levels are associated with insulin resistance and vascular atherosclerosis in a cohort of nondiabetic adult subjects. Acta Diabetol 51(5):705–713. doi:10.1007/s00592-014-0576-0

    Article  CAS  PubMed  Google Scholar 

  6. Tauzin L (2014) Alterations in viscoelastic properties following premature birth may lead to hypertension and cardiovascular disease development in later life. Acta Paediatr. doi:10.1111/apa.12815

    PubMed  Google Scholar 

  7. Tang A, Eng JJ, Brasher PM, Madden KM, Mohammadi A, Krassioukov AV, Tsang TS (2014) Physical activity correlates with arterial stiffness in community-dwelling individuals with stroke. J Stroke Cerebrovasc Dis 23(2):259–266. doi:10.1016/j.jstrokecerebrovasdis.2013.01.020

    Article  PubMed Central  PubMed  Google Scholar 

  8. Miyamoto M, Kotani K, Okada K, Fujii Y, Konno K, Ishibashi S, Taniguchi N (2011) The correlation of common carotid arterial diameter with atherosclerosis and diabetic retinopathy in patients with type 2 diabetes mellitus. Acta Diabetol 49(1):63–68. doi:10.1007/s00592-011-0287-8

    Article  PubMed  Google Scholar 

  9. Jung C-H, Lee W-Y, Kim S-Y, Jung J-H, Rhee E-J, Park C-Y, Mok J-O, Oh K-W, Kim C-H, Park S-W, Kim S-W (2009) The relationship between coronary artery calcification score, plasma osteoprotegerin level and arterial stiffness in asymptomatic type 2 DM. Acta Diabetol 47(S1):145–152. doi:10.1007/s00592-009-0154-z

    Article  PubMed  Google Scholar 

  10. Xu J (1842) Shi GP (2014) Vascular wall extracellular matrix proteins and vascular diseases. Biochim Biophys Acta 11:2106–2119. doi:10.1016/j.bbadis.2014.07.008

    Google Scholar 

  11. Lan TH, Huang XQ, Tan HM (2013) Vascular fibrosis in atherosclerosis. Cardiovasc Pathol 22(5):401–407. doi:10.1016/j.carpath.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  12. Li L, Fan D, Wang C, Wang JY, Cui XB, Wu D, Zhou Y, Wu LL (2011) Angiotensin II increases periostin expression via Ras/p38 MAPK/CREB and ERK1/2/TGF-beta1 pathways in cardiac fibroblasts. Cardiovasc Res 91(1):80–89. doi:10.1093/cvr/cvr067

    Article  CAS  PubMed  Google Scholar 

  13. Kamato D, Burch ML, Piva TJ, Rezaei HB, Rostam MA, Xu S, Zheng W, Little PJ, Osman N (2013) Transforming growth factor-beta signalling: role and consequences of Smad linker region phosphorylation. Cell Signal 25(10):2017–2024. doi:10.1016/j.cellsig.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  14. Ryden M, Imamura T, Jornvall H, Belluardo N, Neveu I, Trupp M, Okadome T, ten Dijke P, Ibanez CF (1996) A novel type I receptor serine-threonine kinase predominantly expressed in the adult central nervous system. J Biol Chem 271(48):30603–30609

    Article  CAS  PubMed  Google Scholar 

  15. Zhao F, Huang F, Tang M, Li X, Zhang N, Amfilochiadis A, Li Y, Hu R, Jin T, Peng C, Wang Q (2012) Nodal induces apoptosis through activation of the ALK7 signaling pathway in pancreatic INS-1 beta-cells. Am J Physiol Endocrinol Metab 303(1):E132–E143. doi:10.1152/ajpendo.00074.2012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Bertolino P, Holmberg R, Reissmann E, Andersson O, Berggren PO, Ibanez CF (2008) Activin B receptor ALK7 is a negative regulator of pancreatic beta-cell function. Proc Natl Acad Sci USA 105(20):7246–7251. doi:10.1073/pnas.0801285105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Andersson O, Korach-Andre M, Reissmann E, Ibanez CF, Bertolino P (2008) Growth/differentiation factor 3 signals through ALK7 and regulates accumulation of adipose tissue and diet-induced obesity. Proc Natl Acad Sci USA 105(20):7252–7256. doi:10.1073/pnas.0800272105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Liu L, Ding WY, Zhao J, Wang ZH, Zhong M, Zhang W, Chen YG, Zhang Y, Li L, Tang MX (2013) Activin receptor-like kinase 7 mediates high glucose-induced H9c2 cardiomyoblast apoptosis through activation of Smad2/3. Int J Biochem Cell Biol 45(9):2027–2035. doi:10.1016/j.biocel.2013.06.018

    Article  CAS  PubMed  Google Scholar 

  19. Shen N, Lin H, Wu T, Wang D, Wang W, Xie H, Zhang J, Feng Z (2013) Inhibition of TGF-beta1-receptor posttranslational core fucosylation attenuates rat renal interstitial fibrosis. Kidney Int 84(1):64–77. doi:10.1038/ki.2013.82

    Article  CAS  PubMed  Google Scholar 

  20. Carlsson LMS, Jacobson P, Walley A, Froguel P, Sjöström L, Svensson P-A, Sjöholm K (2009) ALK7 expression is specific for adipose tissue, reduced in obesity and correlates to factors implicated in metabolic disease. Biochem Biophys Res Commun 382(2):309–314. doi:10.1016/j.bbrc.2009.03.014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Zhang W, Wang H, Lv R, Wang Z, Shang Y, Zhang Y, Zhong M, Chen Y, Tang M (2013) ALK7 gene polymorphism is associated with metabolic syndrome risk and cardiovascular remodeling. Arq Bras Cardiol 101(2):134–140. doi:10.5935/abc.20130148

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Ti Y, Xie GL, Wang ZH, Bi XL, Ding WY, Wang J, Jiang GH, Bu PL, Zhang Y, Zhong M, Zhang W (2011) TRB3 gene silencing alleviates diabetic cardiomyopathy in a type 2 diabetic rat model. Diabetes 60(11):2963–2974. doi:10.2337/db11-0549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Stehouwer CD, Henry RM, Ferreira I (2008) Arterial stiffness in diabetes and the metabolic syndrome: a pathway to cardiovascular disease. Diabetologia 51(4):527–539. doi:10.1007/s00125-007-0918-3

    Article  CAS  PubMed  Google Scholar 

  24. Salum E, Butlin M, Kals J, Zilmer M, Eha J, Avolio AP, Arend A, Aunapuu M, Kampus P (2014) Angiotensin II receptor blocker telmisartan attenuates aortic stiffening and remodelling in STZ-diabetic rats. Diabetol Metab Syndr 6:57. doi:10.1186/1758-5996-6-57

    Article  PubMed Central  PubMed  Google Scholar 

  25. Pyeritz RE (2014) Heritable thoracic aortic disorders. Curr Opin Cardiol 29(1):97–102. doi:10.1097/hco.0000000000000023

    Article  PubMed  Google Scholar 

  26. Yogosawa S, Izumi T (2013) Roles of activin receptor-like kinase 7 signaling and its target, peroxisome proliferator-activated receptor gamma, in lean and obese adipocytes. Adipocyte 2(4):246–250. doi:10.4161/adip.24974

    Article  PubMed Central  PubMed  Google Scholar 

  27. Yogosawa S, Mizutani S, Ogawa Y, Izumi T (2013) Activin receptor-like kinase 7 suppresses lipolysis to accumulate fat in obesity through downregulation of peroxisome proliferator-activated receptor gamma and C/EBPalpha. Diabetes 62(1):115–123. doi:10.2337/db12-0295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Byfield SDC, Major C, Laping NJ, Roberts AB (2004) SB-505124 is a selective inhibitor of transforming growth factor-beta type I receptors ALK4, ALK5, and ALK7. Mol Pharmacol 65(3):744–752. doi:10.1124/mol.65.3.744

    Article  CAS  Google Scholar 

  29. Akpan I, Goncalves MD, Dhir R, Yin X, Pistilli EE, Bogdanovich S, Khurana TS, Ucran J, Lachey J, Ahima RS (2009) The effects of a soluble activin type IIB receptor on obesity and insulin sensitivity. Int J Obes 33(11):1265–1273. doi:10.1038/ijo.2009.162

    Article  CAS  Google Scholar 

  30. Mita T, Watada H, Shimizu T, Tamura Y, Sato F, Watanabe T, Choi JB, Hirose T, Tanaka Y, Kawamori R (2007) Nateglinide reduces carotid intima-media thickening in type 2 diabetic patients under good glycemic control. Arterioscler Thromb Vasc Biol 27(11):2456–2462. doi:10.1161/atvbaha.107.152835

    Article  CAS  PubMed  Google Scholar 

  31. Searls Y, Smirnova IV, Vanhoose L, Fegley B, Loganathan R, Stehno-Bittel L (2012) Time-dependent alterations in rat macrovessels with type 1 diabetes. Exp Diabetes Res 2012:278620. doi:10.1155/2012/278620

    Article  PubMed Central  PubMed  Google Scholar 

  32. Agabiti-Rosei E, Porteri E, Rizzoni D (2009) Arterial stiffness, hypertension, and rational use of nebivolol. Vasc Health Risk Manag 5(1):353–360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the research grants from the National Basic Research Program of China (973 Program, Grant No. 2013CB530700), the National Natural Science Foundation of China (81070192, 81070141, 81100605, 81270352, 81270287, 81300168, 81471036 and 81470560), the Natural Science Foundation of Shandong Province (BS2013YY017), the Independent Innovation Foundation of Shandong University (2012JC034), the cardiovascular exploration research foundation of Chinese Medical Doctor Association (DFCMDA201320) and the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP 20130131120065).

Conflict of interest

No potential conflicts of interest relevant to this article were reported. W.-B.L. and J.Z. researched data and wrote the manuscript; L.L. and Z.-H.W. researched data and contributed to discussion; L.H. researched data; M.Z., W.Z. and M.-X.T. wrote, reviewed and edited the manuscript; and Y.Z. reviewed and edited the manuscript.

Ethical standard

All the animal experimental protocol complied with the ethical standards of Animal Management Rules of the Chinese Ministry of Health (Document NO. 55, 2001). Ethics approval was obtained from Animal Care and Use Committee of Shandong University, China.

Informed consent disclosure

No human studies were carried out in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-xiong Tang.

Additional information

Managed by Antonio Secchi.

Wen-bo Li and Jing Zhao have contributed equally to the article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Wb., Zhao, J., Liu, L. et al. Silencing of activin receptor-like kinase 7 alleviates aortic stiffness in type 2 diabetic rats. Acta Diabetol 52, 717–726 (2015). https://doi.org/10.1007/s00592-014-0706-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-014-0706-8

Keywords

Navigation