Skip to main content

Advertisement

Log in

Common polymorphisms in MIR146a, MIR128a and MIR27a genes contribute to neuropathy susceptibility in type 2 diabetes

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Diabetic polyneuropathy (DPN) and cardiovascular autonomic neuropathy (CAN) are common type 2 diabetes complications with a large inter-individual variability in terms of clinical manifestations and severity. Our aim was to evaluate a possible involvement of genetic polymorphisms in miRNA regions in the susceptibility to DPN and CAN. Nine polymorphisms in miRNA genes were studied in a sample of 132 type 2 diabetes patients (T2D) analysed for DPN and 128 T2D patients analysed for CAN. A genotype–phenotype correlation analysis was performed. The T allele of rs11888095 single nucleotide polymorphism (SNP) in MIR128a was significantly associated with a higher risk (ORadj = 4.89, P adj = 0.02), whereas the C allele of rs2910164 SNP in MIR146a was associated with a lower risk to develop DPN (ORadj = 0.49, P adj = 0.09), respectively. A multivariate logistic regression analysis confirmed that both SNPs contribute to DPN (p < 0.001 and p = 0.01 for MIR128a and MIR146a, respectively). MIR128a SNP significantly contributed also to DPN score (p = 0.026). Rs895819 SNP in MIR27a was significantly associated with a higher risk to develop early CAN (P adj = 0.023 and ORadj = 3.43). The rs2910164 SNP in MIR146a showed a protective effect respect to early CAN (P adj = 0.052, ORadj = 0.32) and to confirmed CAN (P adj = 0.041, ORadj = 0.13). The same SNP resulted significantly associated with a lower CAN score and a higher E/I (p = 0.002 and p = 0.003, respectively). In conclusion, we described associations of MIR128a and MIR146a SNPs with DPN susceptibility and of MIR146a and MIR27a SNPs with CAN susceptibility. This is the first study showing that genetic variability in miRNA genes could be involved in diabetic neuropathies susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dyck PJ, Albers JW, Andersen H, Arezzo JC, Biessels GJ, Bril V, Feldman EL, Litchy WJ, O’Brien PC, Russell JW; on behalf of the Toronto Expert Panel on Diabetic Neuropathy* (2011) Diabetic polyneuropathies: update on research definition, diagnostic criteria and estimation of severity. Diabetes Metab Res Rev doi: 10.1002/dmrr.1226

  2. Yagihashi S, Mizukami H, Sugimoto K (2011) Mechanism of diabetic neuropathy: where are we now and where to go? J Diabetes Invest 2(1):18–32

    Article  CAS  Google Scholar 

  3. Fedele D, Comi G, Coscelli C, Cucinotta D, Feldman EL, Ghirlanda G, Greene DA, Negrin P, Santeusanio F (1997) A multicenter study on the prevalence of diabetic neuropathy in Italy. Italian diabetic neuropathy committee. Diabetes Care 20(5):836–843

    Article  CAS  PubMed  Google Scholar 

  4. Várkonyi T, Kempler P (2008) Diabetic neuropathy: new strategies for treatment. Diabetes Obes Metab 10:99–108

    PubMed  Google Scholar 

  5. Tesfaye S, Boulton AJ, Dyck PJ, Freeman R, Horowitz M, Kempler P, Lauria G, Malik RA, Spallone V, Vinik A, Bernardi L, Valensi P; Toronto Diabetic Neuropathy Expert Group (2010) Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 33(10):2285–2293

    Article  Google Scholar 

  6. Gries FA, Cameron NE, Low PA, Ziegler D (2003) Textbook of diabetic neuropathy. Thieme, Stuttgard, pp 64–82

    Google Scholar 

  7. Papanas N, Vinik AI, Ziegler D (2011) Neuropathy in prediabetes: does the clock start ticking early? Nat Rev Endocrinol 7:682–690

    CAS  PubMed  Google Scholar 

  8. Spallone V, Bellavere F, Scionti L, Maule S, Quadri R, Bax G, Melga P, Viviani GL, Esposito K, Morganti R, Cortelli P; Diabetic Neuropathy Study Group of the Italian Society of Diabetology (2011) Recommendations for the use of cardiovascular tests in diagnosing diabetic autonomic neuropathy. Nutr Metab Cardiovasc Dis 21(1):69–78

    Article  Google Scholar 

  9. Töyry JP, Partanen JV, Niskanen LK, Länsimies EA, Uusitupa MI (1997) Divergent development of autonomic and peripheral somatic neuropathies in NIDDM. Diabetologia 40(8):953–958

    Article  PubMed  Google Scholar 

  10. Gaede P, Pedersen O (2004) Intensive integrated therapy of type 2 diabetes: implications for long-term prognosis. Diabetes 53(Suppl 3):S39–S47

    Article  CAS  PubMed  Google Scholar 

  11. Jurado J, Ybarra J, Romeo JH, Garcia M, Zabaleta-Del-Olmo E (2012) Angiotensin-converting enzyme gene single polymorphism as a genetic biomarker of diabetic peripheral neuropathy: longitudinal prospective study. J Diabetes Complicat 26(2):77–82

    Article  CAS  PubMed  Google Scholar 

  12. Mansoor Q, Javaid A, Bilal N, Ismail M (2012) Angiotensin-converting enzyme (ACE) gene II genotype protects against the development of diabetic peripheral neuropathy in type 2 diabetes mellitus. J Diabetes 4(3):257–261

    Article  CAS  PubMed  Google Scholar 

  13. Yigit S, Karakus N, Inanir A (2013) Association of MTHFR gene C677T mutation with diabetic peripheral neuropathy and diabetic retinopathy. Mol Vis 19:1626–1630

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Vojtková J, Ďurdík P, Čiljaková M, Michnová Z, Turčan T, Babušíková E (2013) The association between glutathione S-transferase T1 and M1 gene polymorphisms and cardiovascular autonomic neuropathy in Slovak adolescents with type 1 diabetes mellitus. J Diabetes Complicat 27(1):44–48

    Article  PubMed  Google Scholar 

  15. Karolina DS, Armugam A, Sepramaniam S (2012) MiRNAs and diabetes mellitus. Expert Rev Endocrinol Metab 7(3):281–300

    Article  CAS  Google Scholar 

  16. Shantikumar S, Caporali A, Emanueli C (2012) Role of microRNAs in diabetes and its cardiovascular complications. Cardiovasc Res 93(4):583–593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Sun G, Yan J, Noltner K, Feng J, Li H, Sarkis DA, Sommer SS, Rossi JJ (2009) SNPs in human miRNA genes affect biogenesis and function. RNA 15(9):1640–1651

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Ciccacci C, Di Fusco D, Cacciotti L, Morganti R, D’Amato C, Greco C, Rufini S, Novelli G, Sangiuolo F, Spallone V, Borgiani P (2013) MicroRNA genetic variations: association with type 2 diabetes. Acta Diabetol 50(6):867–872

    Article  CAS  PubMed  Google Scholar 

  19. Bril V, Perkins BA (2002) Validation of the Toronto clinical scoring system for diabetic polyneuropathy. Diabetes Care 25(11):2048–2052

    Article  PubMed  Google Scholar 

  20. Bax G, Fagherazzi C, Piarulli F, Nicolucci A, Fedele D (1996) Reproducibility of Michigan neuropathy screening instrument (MNSI): a comparison with tests using the vibratory and thermal perception thresholds. Diabetes Care 19(8):904–905

    CAS  PubMed  Google Scholar 

  21. Zinman LH, Bril V, Perkins BA (2004) Cooling detection thresholds in the assessment of diabetic sensory polyneuropathy: comparison of CASE IV and Medoc instruments. Diabetes Care 27(7):1674–1679

    Article  PubMed  Google Scholar 

  22. Bouhassira D, Attal N, Alchaar H, Boureau F, Brochet B, Bruxelle J, Cunin G, Fermanian J, Ginies P, Grun-Overdyking A, Jafari-Schluep H, Lantéri-Minet M, Laurent B, Mick G, Serrie A, Valade D, Vicaut E (2005) Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4). Pain 114:29–36

    Article  PubMed  Google Scholar 

  23. Spallone V, Morganti R, D’Amato C, Greco C, Cacciotti L, Marfia GA (2012) Validation of DN4 as a screening tool for neuropathic pain in painful diabetic polyneuropathy. Diabet Med 29:578–585

    Article  CAS  PubMed  Google Scholar 

  24. Stålberg E, Falck B, Gilai A, Jabre J, Sonoo M, Todnem K (1999) Standards for quantification of EMG and neurography. The international federation of clinical neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 52:213–220

    PubMed  Google Scholar 

  25. Dunnigan SK, Ebadi H, Breiner A, Katzberg HD, Lovblom LE, Perkins BA, Bril V (2013) Conduction slowing in diabetic sensorimotor polyneuropathy. Diabetes Care 36:3684–3690

    Article  PubMed  Google Scholar 

  26. Natarajan R, Putta S, Kato M (2012) MicroRNAs and diabetic complications. J Cardiovasc Transl Res 5(4):413–422

    Article  PubMed Central  PubMed  Google Scholar 

  27. Lorenzen J, Kumarswamy R, Dangwal S, Thum T (2012) MicroRNAs in diabetes and diabetes-associated complications. RNA Biol 9(6):820–827

    Article  CAS  PubMed  Google Scholar 

  28. Kovacs B, Lumayag S, Cowan C, Xu S (2011) MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats. Invest Ophthalmol Vis Sci 52(7):4402–4409

    Article  CAS  PubMed  Google Scholar 

  29. Feng B, Chen S, McArthur K, Wu Y, Sen S, Ding Q, Feldman RD, Chakrabarti S (2011) miR-146a-mediated extracellular matrix protein production in chronic diabetes complications. Diabetes 60(11):2975–2984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. McArthur K, Feng B, Wu Y, Chen S, Chakrabarti S (2011) MicroRNA-200b regulates vascular endothelial growth factor-mediated alterations in diabetic retinopathy. Diabetes 60(4):1314–1323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Silva VA, Polesskaya A, Sousa TA, Corrêa VM, André ND, Reis RI, Kettelhut IC, Harel-Bellan A, De Lucca FL (2011) Expression and cellular localization of microRNA-29b and RAX, an activator of the RNA-dependent protein kinase (PKR), in the retina of streptozotocin-induced diabetic rats. Mol Vis 17:2228–2240

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Du B, Ma LM, Huang MB, Zhou H, Huang HL, Shao P, Chen YQ, Qu LH (2010) High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells. FEBS Lett 584(4):811–816

    Article  CAS  PubMed  Google Scholar 

  33. Srivastava K, Srivastava A (2012) Comprehensive review of genetic association studies and meta-analyses on miRNA polymorphisms and cancer risk. PLoS One 7(11):e50966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Wang PY, Gao ZH, Jiang ZH, Li XX, Jiang BF, Xie SY (2013) The associations of single nucleotide polymorphisms in miR-146a, miR-196a and miR-499 with breast cancer susceptibility. PLoS One 8(9):e70656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Chen HF, Hu TT, Zheng XY, Li MQ, Luo MH, Yao YX, Chen Q, Yu SY (2013) Association between miR-146a rs2910164 polymorphism and autoimmune diseases susceptibility: a meta-analysis. Gene 521(2):259–264

    Article  CAS  PubMed  Google Scholar 

  36. Luo X, Yang W, Ye DQ, Cui H, Zhang Y, Hirankarn N, Qian X, Tang Y, Lau YL, de Vries N, Tak PP, Tsao BP, Shen N (2011) A functional variant in microRNA-146a promoter modulates its expression and confers disease risk for systemic lupus erythematosus. PLoS Genet 7(6):e1002128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Yang B, Zhang JL, Shi YY, Li DD, Chen J, Huang ZC, Cai B, Song XB, Li LX, Ying BW, Wang LL (2011) Association study of single nucleotide polymorphisms in pre-miRNA and rheumatoid arthritis in a Han Chinese population. Mol Biol Rep 38(8):4913–4919

    Article  CAS  PubMed  Google Scholar 

  38. Green MJ, Cairns MJ, Wu J, Dragovic M, Jablensky A, Tooney PA, Scott RJ, Carr VJ, Australian Schizophrenia Research Bank (2013) Genome-wide supported variant MIR137 and severe negative symptoms predict membership of an impaired cognitive subtype of schizophrenia. Mol Psychiatry 18(7):774–780

    Article  CAS  PubMed  Google Scholar 

  39. Tang Y, Luo X, Cui H, Ni X, Yuan M, Guo Y, Huang X, Zhou H, de Vries N, Tak PP, Chen S, Shen N (2009) MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthr Rheum 60:1065–1075

    Article  CAS  Google Scholar 

  40. Li D, Wang T, Song X, Qucuo M, Yang B, Zhang J, Wang J, Ying B, Tao C, Wang L (2011) Genetic study of two single nucleotide polymorphisms within corresponding microRNAs and susceptibility to tuberculosis in a Chinese Tibetan and Han population. Hum Immunol 72(7):598–602

    Article  CAS  PubMed  Google Scholar 

  41. Jazdzewski K, Liyanarachchi S, Swierniak M, Pachucki J, Ringel MD, Jarzab B, de la Chapelle A (2009) Polymorphic mature microRNAs from passenger strand of pre-miR-146a contribute to thyroid cancer. Proc Natl Acad Sci USA 106(5):1502–1505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Balasubramanyam M, Aravind S, Gokulakrishnan K, Prabu P, Sathishkumar C, Ranjani H, Mohan V (2011) Impaired miR-146a expression links subclinical inflammation and insulin resistance in Type 2 diabetes. Mol Cell Biochem 351(1–2):197–205

    Article  CAS  PubMed  Google Scholar 

  43. Hou J, Wang P, Lin L, Liu X, Ma F, An H, Wang Z, Cao X (2009) MicroRNA-146a feedback inhibits RIG-I-dependent type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J Immunol 183:2150–2158

    Article  CAS  PubMed  Google Scholar 

  44. Bhaumik D, Scott GK, Schokrpur S, Patil CK, Campisi J, Benz CC (2008) Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene 27(42):5643–5647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH, Chan EK (2008) Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthr Res Ther 10:R101

    Article  Google Scholar 

  46. Ramkaran P, Khan S, Phulukdaree A, Moodley D, Chuturgoon AA (2013) miR-146a polymorphism influences levels of miR-146a, IRAK-1, and TRAF-6 in young patients with coronary artery disease. Cell Biochem Biophys. doi:10.1007/s12013-013-9704-7

    Google Scholar 

  47. Cameron NE, Cotter MA (2008) Pro-inflammatory mechanisms in diabetic neuropathy: focus on the nuclear factor kappa B pathway. Curr Drug Target 9(1):60–67

    Article  CAS  Google Scholar 

  48. Obrosova IG (2009) Diabetic painful and insensate neuropathy: pathogenesis and potential treatments. Neurotherapeutics 6(4):638–647

    Article  CAS  PubMed  Google Scholar 

  49. Herder C, Lankisch M, Ziegler D, Rathmann W, Koenig W, Illig T, Döring A, Thorand B, Holle R, Giani G, Martin S, Meisinger C (2009) Subclinical inflammation and diabetic polyneuropathy: MONICA/KORA survey F3 (Augsburg, Germany). Diabetes Care 32(4):680–682

    Article  PubMed Central  PubMed  Google Scholar 

  50. Doupis J, Lyons TE, Wu S, Gnardellis C, Dinh T, Veves A (2009) Microvascular reactivity and inflammatory cytokines in painful and painless peripheral diabetic neuropathy. J Clin Endocrinol Metab 94(6):2157–2163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Spallone V, Greco C (2013) Painful and painless diabetic neuropathy: one disease or two? Curr Diabetes Rep 13(4):533–549

    Article  CAS  Google Scholar 

  52. Sajadieh A, Nielsen OW, Rasmussen V, Hein HO, Abedini S, Hansen JF (2004) Increased heart rate and reduced heart-rate variability are associated with subclinical inflammation in middle-aged and elderly subjects with no apparent heart disease. Eur Heart J 25(5):363–370

    Article  PubMed  Google Scholar 

  53. Sloan RP, McCreath H, Tracey KJ, Sidney S, Liu K, Seeman T (2007) RR interval variability is inversely related to inflammatory markers: the CARDIA study. Mol Med 13(3–4):178–184

    PubMed Central  PubMed  Google Scholar 

  54. Lanza GA, Pitocco D, Navarese EP, Sestito A, Sgueglia GA, Manto A, Infusino F, Musella T, Ghirlanda G, Crea F (2007) Association between cardiac autonomic dysfunction and inflammation in type 1 diabetic patients: effect of beta-blockade. Eur Heart J 28(7):814–820

    Article  CAS  PubMed  Google Scholar 

  55. Lieb DC, Parson HK, Mamikunian G, Vinik AI (2012) Cardiac autonomic imbalance in newly diagnosed and established diabetes is associated with markers of adipose tissue inflammation. Exp Diabetes Res 2012:878760

    Article  PubMed Central  PubMed  Google Scholar 

  56. Grant RW, Moore AF, Florez JC (2009) Genetic architecture of type 2 diabetes: recent progress and clinical implications. Diabetes Care 32(6):1107–1114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Motohashi N, Alexander MS, Shimizu-Motohashi Y, Myers JA, Kawahara G, Kunkel LM (2013) Regulation of IRS1/Akt insulin signaling by microRNA-128a during myogenesis. J Cell Sci 126(Pt 12):2678–2691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Guerau-de-Arellano M, Smith KM, Godlewski J, Liu Y, Winger R, Lawler SE, Whitacre CC, Racke MK, Lovett-Racke AE (2011) Micro-RNA dysregulation in multiple sclerosis favours pro-inflammatory T-cell-mediated autoimmunity. Brain 134(Pt 12):3578–3589

    Article  PubMed  Google Scholar 

  59. Narasimhan M, Patel D, Vedpathak D, Rathinam M, Henderson G, Mahimainathan L (2012) Identification of novel microRNAs in post-transcriptional control of Nrf2 expression and redox homeostasis in neuronal, SH-SY5Y cells. PLoS One 7(12):e51111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Laura Cacciotti and Carla Greco are trainees of the Specialization School for Nutritional Sciences, Tor Vergata University, Rome, Italy. Cinzia D’Amato is a PhD student in Experimental and Systems Medicine (with Professor Davide Lauro as Academic Advisor), Tor Vergata University, Rome, Italy. Part of the study was presented at the 23rd Annual Meeting of NEURODIAB (Diabetic Neuropathy Study Group of European Association for the Study of Diabetes), Castelldefels, Barcelona, Spain, 19–22 September 2013.

Conflict of interest

The authors declare they have no conflict of interest.

Human and animal rights

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008 (5).

Informed consent

Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cinzia Ciccacci.

Additional information

Managed by Massimo Federici.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 74 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciccacci, C., Morganti, R., Di Fusco, D. et al. Common polymorphisms in MIR146a, MIR128a and MIR27a genes contribute to neuropathy susceptibility in type 2 diabetes. Acta Diabetol 51, 663–671 (2014). https://doi.org/10.1007/s00592-014-0582-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-014-0582-2

Keywords

Navigation