Skip to main content
Log in

The use of ionising radiation in orthopaedic surgery: principles, regulations and managing risk to surgeons and patients

  • General Review
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

The use of ionising radiation for plain film radiography and computerised tomography is fundamental in both diagnostics and treatment for orthopaedics. However, radiation is not without risk as high exposure can increase the risk of cancer. Little time is spent educating doctors about the relative risks of radiation, both to patients and themselves. In addition, there are common misunderstandings about the best ways to mitigate such risk. We aim to provide an overview of the fundamental principles of the use of ionising radiation and its risks within the context of orthopaedic surgery. While providing a narrative review of the current literature, we discuss the basic physics, standards of good practice and relevant UK and European regulations. We discuss the risks to patients and surgeons and suggest ways that these can be mitigated in the operating theatre. A thorough understanding of the risks, and appropriate procedural rules, with respect to the use of ionising radiation is essential for those in orthopaedic practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom (2014). vol 59. Council Regulation (EC). https://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2014:013:0001:0073:EN:PDF. Accesed 1 Nov 2020

  2. The Ionising Radiation (Medical Exposure) Regulations (2017). UK Government. https://www.legislation.gov.uk/uksi/2017/1322/contents/made. Accessed 1 Nov 2020

  3. Health Education England (2020) Radiation protection for cardiology. e-learning for healthcare (e-LfH). https://www.e-lfh.org.uk/programmes/radiation-protection-for-cardiology/. Accessed 1 Nov 2020

  4. Tunçer N, Kuyucu E, Sayar Ş, Polat G, Erdil İ, Tuncay İ (2017) Orthopedic surgeons’ knowledge regarding risk of radiation exposition: a survey analysis. Sicot j 3:29. https://doi.org/10.1051/sicotj/2017008

    Article  PubMed  PubMed Central  Google Scholar 

  5. National Aeronautics and Space Administration (2013). Comparison of wavelength, frequency and energy for the electromagnetic spectrum. https://imagine.gsfc.nasa.gov/science/toolbox/emspectrum1.html. Accessed 1 Nov 2020

  6. Munro, Leonie, Ostensen, Harald, Ingolfsdottir, Gudrun & World Health Organization (2004) Diagnostic imaging and laboratory technology team Basics of radiation protection for everyday use: how to achieve ALARA : working tips and guidelines / Editors: Harald Ostensen, Gudrun Ingolfsdottir ; author: Leonie Munro. World Health Organization. https://apps.who.int/iris/handle/10665/42973. Accessed 1 Nov 2020

  7. The Ionising Radiations Regulations (2017) UK Government. https://www.legislation.gov.uk/uksi/2017/1075/contents/made. Accessed 1 Nov 2020

  8. Executive HaS (2017) Work with ionising radiation. Ionising radiation regulations 2017. Approved code of practice and guidance. https://www.hse.gov.uk/pubns/books/l121.htm. Accessed 1 Nov 2020

  9. Hayda RA, Hsu RY, DePasse JM, Gil JA (2018) Radiation Exposure and Health Risks for Orthopaedic Surgeons. J Am Acad Orthop Surg 26(8):268–277. https://doi.org/10.5435/jaaos-d-16-00342

    Article  PubMed  Google Scholar 

  10. Ozasa K, Shimizu Y, Suyama A, Kasagi F, Soda M, Grant EJ, Sakata R, Sugiyama H, Kodama K (2012) Studies of the mortality of atomic bomb survivors, Report 14, 1950–2003: an overview of cancer and noncancer diseases. Radiat Res 177(3):229–243. https://doi.org/10.1667/rr2629.1

    Article  CAS  PubMed  Google Scholar 

  11. ICRP (2007). The 2007 recommendations of the international commission on radiological protection. ICRP Publication 103. Ann ICRP. 37 (2–4)

  12. Lam DL, Larson DB, Eisenberg JD, Forman HP, Lee CI (2015) Communicating potential radiation-induced cancer risks from medical imaging directly to patients. AJR Am J Roentgenol 205(5):962–970. https://doi.org/10.2214/ajr.15.15057

    Article  PubMed  Google Scholar 

  13. Han MA, Kim JH (2018) Diagnostic x-ray exposure and thyroid cancer risk: systematic review and meta-analysis. Thyroid 28(2):220–228. https://doi.org/10.1089/thy.2017.0159

    Article  PubMed  Google Scholar 

  14. Miglioretti DL, Johnson E, Williams A, Greenlee RT, Weinmann S, Solberg LI, Feigelson HS, Roblin D, Flynn MJ, Vanneman N, Smith-Bindman R (2013) The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr 167(8):700–707. https://doi.org/10.1001/jamapediatrics.2013.311

    Article  PubMed  PubMed Central  Google Scholar 

  15. Linet MS, Slovis TL, Miller DL, Kleinerman R, Lee C, Rajaraman P, Berrington de Gonzalez A (2012) Cancer risks associated with external radiation from diagnostic imaging procedures. CA Cancer J Clin 62(2):75–100. https://doi.org/10.3322/caac.21132

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tien HC, Tremblay LN, Rizoli SB, Gelberg J, Spencer F, Caldwell C, Brenneman FD (2007) Radiation exposure from diagnostic imaging in severely injured trauma patients. J Trauma 62(1):151–156. https://doi.org/10.1097/TA.0b013e31802d9700

    Article  PubMed  Google Scholar 

  17. Lin EC (2010) Radiation risk from medical imaging. Mayo Clin Proc 85(12):1142–1146

    Article  PubMed  PubMed Central  Google Scholar 

  18. (UNSCEAR) UNSCotEoAR (2000) Sources and effects of ionizing radiation. https://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Report_Vol.I.pdf. Accessed 1 Nov 2020

  19. Berrington de González A, Darby S (2004) Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet 363(9406):345–351. https://doi.org/10.1016/s0140-6736(04)15433-0

    Article  PubMed  Google Scholar 

  20. Radiological Society of North America (2019) Radiation dose in X-ray and CT exams. https://www.radiologyinfo.org/en/pdf/safety-xray.pdf. Accessed 1 Nov 2020

  21. Public Health England (2008) Patient dose information: guidance. https://www.gov.uk/government/publications/medical-radiation-patient-doses/patient-dose-information-guidance. Accessed 1 Nov 2020

  22. Centers for Disease Control and Prevention (2015) radiation from air travel. https://www.cdc.gov/nceh/radiation/air_travel.html#:~:text=The%20longer%20you%20are%20on,the%20more%20radiation%20you%20receive.&text=The%20higher%20you%20are%20in,the%20atmosphere%20at%20higher%20altitudes. Accessed 1 Nov 2020

  23. Guidance on using shielding on patients for diagnostic radiology applications (2020). British Institute of Radiology. https://www.bir.org.uk/education-and-events/patient-shielding-guidance.aspx. Accessed 29 Dec 2020

  24. Smith-Bindman R, Lipson J, Marcus R, Kim KP, Mahesh M, Gould R, Berrington de González A, Miglioretti DL (2009) Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med 169(22):2078–2086. https://doi.org/10.1001/archinternmed.2009.427

    Article  PubMed  PubMed Central  Google Scholar 

  25. ICRP (2013). Radiological protection in paediatric diagnostic and interventional radiology. ICRP Publication 121. Ann. ICRP 42(2)

  26. Brenner DJ, Elliston CD, Hall EJ, Berdon WE (2001) Estimates of the cancer risks from pediatric CT radiation are not merely theoretical: comment on point/counterpoint: in x-ray computed tomography, technique factors should be selected appropriate to patient size against the proposition. Med Phys 28(11):2387–2388

    Article  CAS  PubMed  Google Scholar 

  27. Alzen G, Benz-Bohm G (2011) Radiation protection in pediatric radiology. Dtsch Arztebl Int 108(24):407–414. https://doi.org/10.3238/arztebl.2011.0407

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yanch JC, Behrman RH, Hendricks MJ, McCall JH (2009) Increased radiation dose to overweight and obese patients from radiographic examinations. Radiology 252(1):128–139. https://doi.org/10.1148/radiol.2521080141

    Article  PubMed  Google Scholar 

  29. Williamson M, Iliopoulos E, Williams R, Trompeter A (2018) Intra-operative fluoroscopy time and radiation dose during suprapatellar tibial nailing versus infrapatellar tibial nailing. Injury 49(10):1891–1894. https://doi.org/10.1016/j.injury.2018.07.004

    Article  CAS  PubMed  Google Scholar 

  30. Quah C, Mehta R, Shivji FS, Hassan S, Chandrasenan J, Moran CG, Forward DP (2017) The effect of surgical experience on the amount of radiation exposure from fluoroscopy during dynamic hip screw fixation. Ann R Coll Surg Engl 99(3):198–202. https://doi.org/10.1308/rcsann.2016.0282

    Article  CAS  PubMed  Google Scholar 

  31. Malik AT, Rai HH, Lakdawala RH, Noordin S (2019) Does surgeon experience influence the amount of radiation exposure during orthopedic procedures? A Syst Rev Orthop Rev (Pavia) 11(1):7667. https://doi.org/10.4081/or.2019.7667

    Article  Google Scholar 

  32. Giannoudis PV, McGuigan J, Shaw DL (1998) Ionising radiation during internal fixation of extracapsular neck of femur fractures. Injury 29(6):469–472. https://doi.org/10.1016/s0020-1383(98)00090-4

    Article  CAS  PubMed  Google Scholar 

  33. Hak DJ (2017) Radiation exposure during intramedullary nailing. Injury 48(Suppl 1):S26–S29. https://doi.org/10.1016/j.injury.2017.04.023

    Article  PubMed  Google Scholar 

  34. Rehani MM, Ciraj-Bjelac O, Vañó E, Miller DL, Walsh S, Giordano BD, Persliden J (2010) ICRP Publication 117. Radiological protection in fluoroscopically guided procedures performed outside the imaging department. Ann ICRP. https://doi.org/10.1016/j.icrp.2012.03.001

    Article  PubMed  Google Scholar 

  35. Matityahu A, Duffy RK, Goldhahn S, Joeris A, Richter PH, Gebhard F (2017) The great unknown—A systematic literature review about risk associated with intraoperative imaging during orthopaedic surgeries. Injury 48(8):1727–1734. https://doi.org/10.1016/j.injury.2017.04.041

    Article  PubMed  Google Scholar 

  36. Oddy MJ, Aldam CH (2006) Ionising radiation exposure to orthopaedic trainees: the effect of sub-specialty training. Ann R Coll Surg Engl 88(3):297–301. https://doi.org/10.1308/003588406X98702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Smith GL, Wakeman R, Briggs TW (1996) Radiation exposure of orthopaedic trainees: quantifying the risk. J R Coll Surg Edinb 41(2):132–134

    CAS  PubMed  Google Scholar 

  38. Smith DL, Heldt JP, Richards GD, Agarwal G, Brisbane WG, Chen CJ, Chamberlin JD, Baldwin DD (2013) Radiation exposure during continuous and pulsed fluoroscopy. J Endourol 27(3):384–388

    Article  PubMed  Google Scholar 

  39. Tsalafoutas IA, Tsapaki V, Kaliakmanis A, Pneumaticos S, Tsoronis F, Koulentianos ED, Papachristou G (2007) Estimation of radiation doses to patients and surgeons from various fluoroscopically guided orthopaedic surgeries. Radiat Prot Dosim 128(1):112–119

    Article  Google Scholar 

  40. Arnstein PM, Richards AM, Putney R (1994) The risk from radiation exposure during operative X-ray screening in hand surgery. J Hand Surg Br 19(3):393–396

    Article  CAS  PubMed  Google Scholar 

  41. Giordano BD, Baumhauer JF, Morgan TL, Rechtine GR 2nd (2009) Patient and surgeon radiation exposure: comparison of standard and mini-C-arm fluoroscopy. J Bone Joint Surg Am 91(2):297–304. https://doi.org/10.2106/JBJS.H.00407

    Article  PubMed  Google Scholar 

  42. Muller LP, Suffner J, Wenda K, Mohr W, Rommens PM (1998) Radiation exposure to the hands and the thyroid of the surgeon during intramedullary nailing. Injury 29(6):461–468

    Article  CAS  PubMed  Google Scholar 

  43. Dewey P, Incoll I (1998) Evaluation of thyroid shields for reduction of radiation exposure to orthopaedic surgeons. Aust N Z J Surg 68(9):635–636

    Article  CAS  PubMed  Google Scholar 

  44. Ainsbury EA, Bouffler SD, Dörr W, Graw J, Muirhead CR, Edwards AA, Cooper J (2009) Radiation cataractogenesis: a review of recent studies. Radiat Res 172(1):1–9. https://doi.org/10.1667/rr1688.1

    Article  CAS  PubMed  Google Scholar 

  45. Klein BE, Klein R, Linton KL, Franke T (1993) Diagnostic x-ray exposure and lens opacities: the beaver dam eye study. Am J Public Health 83(4):588–590. https://doi.org/10.2105/ajph.83.4.588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Le Heron J, Padovani R, Smith I, Czarwinski R (2010) Radiation protection of medical staff. Eur J Radiol 76(1):20–23. https://doi.org/10.1016/j.ejrad.2010.06.034

    Article  PubMed  Google Scholar 

  47. Burns S, Thornton R, Dauer LT, Quinn B, Miodownik D, Hak DJ (2013) Leaded eyeglasses substantially reduce radiation exposure of the surgeon’s eyes during acquisition of typical fluoroscopic views of the hip and pelvis. J Bone Jt Surg Am 95(14):1307–1311. https://doi.org/10.2106/jbjs.L.00893

    Article  Google Scholar 

  48. Apelmann C, Kowald B, Weinrich N, Dischinger J, Nienhaus A, Seide K, Martens H, Jürgens C (2019) Radiation dose to the eye lens through radiological imaging procedures at the surgical workplace during trauma surgery. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph16203850

    Article  PubMed  PubMed Central  Google Scholar 

  49. Stewart FA, Akleyev AV, Hauer-Jensen M, Hendry JH, Kleiman NJ, Macvittie TJ, Aleman BM, Edgar AB, Mabuchi K, Muirhead CR, Shore RE, Wallace WH (2012) ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs–threshold doses for tissue reactions in a radiation protection context. Ann ICRP 41(1–2):1–322. https://doi.org/10.1016/j.icrp.2012.02.001

    Article  CAS  PubMed  Google Scholar 

  50. Jacob S, Boveda S, Bar O, Brézin A, Maccia C, Laurier D, Bernier MO (2013) Interventional cardiologists and risk of radiation-induced cataract: results of a french multicenter observational study. Int J Cardiol 167(5):1843–1847. https://doi.org/10.1016/j.ijcard.2012.04.124

    Article  PubMed  Google Scholar 

  51. Vano E, Kleiman NJ, Duran A, Rehani MM, Echeverri D, Cabrera M (2010) Radiation cataract risk in interventional cardiology personnel. Radiat Res 174(4):490–495. https://doi.org/10.1667/rr2207.1

    Article  CAS  PubMed  Google Scholar 

  52. Singer G, Herron B, Herron D (2011) Exposure from the large C-arm versus the mini C-arm using hand/wrist and elbow phantoms. The Journal of hand surgery 36(4):628–631

    Article  PubMed  Google Scholar 

  53. Mehlman CT, DiPasquale TG (1997) Radiation exposure to the orthopaedic surgical team during fluoroscopy: “how far away is far enough?” J Orthop Trauma 11(6):392–398

    Article  CAS  PubMed  Google Scholar 

  54. Alonso JA, Shaw DL, Maxwell A, McGill GP, Hart GC (2001) Scattered radiation during fixation of hip fractures is distance alone enough protection? J Bone Joint Surg Br 83(6):815–818

    Article  CAS  PubMed  Google Scholar 

  55. Yu E, Khan SN (2014) Does less invasive spine surgery result in increased radiation exposure? A systematic review. Clin Orthop Relat Res® 472(6):1738–1748

    Article  Google Scholar 

  56. Rampersaud YR, Foley KT, Shen AC, Williams S, Solomito M (2000) Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine 25(20):2637–2645

    Article  CAS  PubMed  Google Scholar 

  57. van der Merwe B (2012) Radiation dose to surgeons in theatre. S Afr J Surg 50(2):26–29

    PubMed  Google Scholar 

  58. Tremains MR, Georgiadis GM, Dennis MJ (2001) Radiation exposure with use of the inverted-c-arm technique in upper-extremity surgery. J Bone Jt Surg Am 83(5):674–678. https://doi.org/10.2106/00004623-200105000-00005

    Article  CAS  Google Scholar 

  59. AO Trauma (2019) Characteristics of X-rays. https://aotrauma.aofoundation.org/-/media/project/aocmf/aotrauma/documents/education_pdf/orp_handout_english_characteristics_of_x-rays_nlogo.pdf?la=en&hash=DF6CE1FA3A8A3F65194898A46152047349DB08BE. Accessed 29 Dec 2020

  60. Singer G (2005) Radiation exposure to the hands from mini C-arm fluoroscopy. J Hand Surg Am 30(4):795–797. https://doi.org/10.1016/j.jhsa.2005.01.007

    Article  PubMed  Google Scholar 

  61. Lee SY, Min E, Bae J, Chung CY, Lee KM, Kwon S-S, Park MS, Lee K (2013) Types and arrangement of thyroid shields to reduce exposure of surgeons to ionizing radiation during intraoperative use of C-arm fluoroscopy. Spine 38(24):2108–2112

    Article  PubMed  Google Scholar 

  62. Struelens L, Schoonjans W, Schils F, De Smedt K, Vanhavere F (2013) Extremity and eye lens dosimetry for medical staff performing vertebroplasty and kyphoplasty procedures. J Radiol Prot 33(3):635

    Article  CAS  PubMed  Google Scholar 

  63. Mechlenburg I, Daugaard H, Søballe K (2009) Radiation exposure to the orthopaedic surgeon during periacetabular osteotomy. Int Orthop 33(6):1747

    Article  PubMed  Google Scholar 

  64. Cheriachan D, Hughes AM, du Moulin WS, Williams C, Molnar R (2016) Ionizing radiation doses detected at the eye level of the primary surgeon during orthopaedic procedures. J Orthop Trauma 30(7):e230-235. https://doi.org/10.1097/BOT.0000000000000578

    Article  PubMed  Google Scholar 

  65. Yamashita K, Higashino K, Hayashi H, Hayashi F, Fukui Y, Sairyo K (2017) Pulsation and collimation during fluoroscopy to decrease radiation: a cadaver study. JB JS Open Access 2(4):e0039. https://doi.org/10.2106/JBJS.OA.17.00039

    Article  PubMed  PubMed Central  Google Scholar 

  66. Shoaib A, Rethnam U, Bansal R, De A, Makwana N (2008) A comparison of radiation exposure with the conventional versus mini C arm in orthopedic extremity surgery. Foot Ankle Int 29(1):58–61. https://doi.org/10.3113/FAI.2008.0058

    Article  PubMed  Google Scholar 

  67. Akins R, Abdelgawad AA, Kanlic EM (2012) Computer navigation in orthopedic trauma: safer surgeries with less irradiation and more precision. J Surg Orthop Adv 21(4):187–197

    Article  PubMed  Google Scholar 

  68. Bydon M, Xu R, Amin AG, Macki M, Kaloostian P, Sciubba DM, Wolinsky JP, Bydon A, Gokaslan ZL, Witham TF (2014) Safety and efficacy of pedicle screw placement using intraoperative computed tomography: consecutive series of 1148 pedicle screws. J Neurosurg Spine 21(3):320–328. https://doi.org/10.3171/2014.5.Spine13567

    Article  PubMed  Google Scholar 

  69. Beerekamp MS, Sulkers GS, Ubbink DT, Maas M, Schep NW, Goslings JC (2012) Accuracy and consequences of 3D-fluoroscopy in upper and lower extremity fracture treatment: a systematic review. Eur J Radiol 81(12):4019–4028. https://doi.org/10.1016/j.ejrad.2012.06.021

    Article  PubMed  Google Scholar 

  70. Luxenhofer M, Beisemann N, Schnetzke M, Vetter SY, Grützner PA, Franke J, Keil H (2020) Diagnostic accuracy of intraoperative CT-imaging in complex articular fractures–a cadaveric study. Sci Rep 10(1):4530. https://doi.org/10.1038/s41598-020-61267-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mendelsohn D, Strelzow J, Dea N, Ford NL, Batke J, Pennington A, Yang K, Ailon T, Boyd M, Dvorak M, Kwon B, Paquette S, Fisher C, Street J (2016) Patient and surgeon radiation exposure during spinal instrumentation using intraoperative computed tomography-based navigation. Spine J 16(3):343–354. https://doi.org/10.1016/j.spinee.2015.11.020

    Article  PubMed  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Raza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, M., Houston, J., Geleit, R. et al. The use of ionising radiation in orthopaedic surgery: principles, regulations and managing risk to surgeons and patients. Eur J Orthop Surg Traumatol 31, 947–955 (2021). https://doi.org/10.1007/s00590-021-02955-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-021-02955-9

Keywords

Navigation