Skip to main content

Advertisement

Log in

Treatment of critical-sized bone defects: clinical and tissue engineering perspectives

  • General Review • BONE - TRAUMA
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Critical-sized bone defects are defined as those that will not heal spontaneously within a patient’s lifetime. Current treatment options include vascularized bone grafts, distraction osteogenesis, and the induced membrane technique. The induced membrane technique is an increasingly utilized method with favorable results including high rates of union. Tissue engineering holds promise in the treatment of large bone defects due to advancement of stem cell biology, novel biomaterials, and 3D bioprinting. In this review, we provide an overview of the current operative treatment strategies of critical-sized bone defects as well as the current state of tissue engineering for such defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Accadbled F, Mazeau P, Chotel F, Cottalorda J, Sales de Gauzy J, Kohler R (2013) Induced-membrane femur reconstruction after resection of bone malignancies: three cases of massive graft resorption in children. Orthop Traumatol Surg Res OTSR 99:479–483. doi:10.1016/j.otsr.2013.01.008

    Article  CAS  PubMed  Google Scholar 

  2. Ackermann PW, Hart DA (2013) Influence of comorbidities: neuropathy, vasculopathy, and diabetes on healing response quality. Adv Wound Care 2:410–421. doi:10.1089/wound.2012.0437

    Article  Google Scholar 

  3. Aho OM, Lehenkari P, Ristiniemi J, Lehtonen S, Risteli J, Leskela HV (2013) The mechanism of action of induced membranes in bone repair. J Bone Jt Surg Am 95:597–604. doi:10.2106/JBJS.L.00310

    Article  Google Scholar 

  4. Apard T, Bigorre N, Cronier P, Duteille F, Bizot P, Massin P (2010) Two-stage reconstruction of post-traumatic segmental tibia bone loss with nailing. Orthop Traumatol Surg Res OTSR 96:549–553. doi:10.1016/j.otsr.2010.02.010

    Article  CAS  PubMed  Google Scholar 

  5. Aponte-Tinao L, Farfalli GL, Ritacco LE, Ayerza MA, Muscolo DL (2012) Intercalary femur allografts are an acceptable alternative after tumor resection. Clin Orthop Relat Res 470:728–734. doi:10.1007/s11999-011-1952-5

    Article  PubMed  Google Scholar 

  6. Arai K, Toh S, Tsubo K, Nishikawa S, Narita S, Miura H (2002) Complications of vascularized fibula graft for reconstruction of long bones. Plast Reconstr Surg 109:2301–2306

    Article  PubMed  Google Scholar 

  7. Ardeshirylajimi A et al (2015) Enhanced osteoconductivity of polyethersulphone nanofibres loaded with bioactive glass nanoparticles in in vitro and in vivo models. Cell Prolif 48:455–464. doi:10.1111/cpr.12198

    Article  CAS  PubMed  Google Scholar 

  8. Ardeshirylajimi A, Hosseinkhani S, Parivar K, Yaghmaie P, Soleimani M (2013) Nanofiber-based polyethersulfone scaffold and efficient differentiation of human induced pluripotent stem cells into osteoblastic lineage. Mol Biol Rep 40:4287–4294. doi:10.1007/s11033-013-2515-5

    Article  CAS  PubMed  Google Scholar 

  9. Aronson J (1997) Limb-lengthening, skeletal reconstruction, and bone transport with the Ilizarov method. J Bone Jt Surg Am 79:1243–1258

    Article  CAS  Google Scholar 

  10. Aronson J, Harrison B, Boyd CM, Cannon DJ, Lubansky HJ (1988) Mechanical induction of osteogenesis: the importance of pin rigidity. J Pediatr Orthop 8:396–401

    Article  CAS  PubMed  Google Scholar 

  11. Aronson J, Harrison B, Boyd CM, Cannon DJ, Lubansky HJ, Stewart C (1988) Mechanical induction of osteogenesis. Prelim Stud Ann Clin Lab Sci 18:195–203

    CAS  Google Scholar 

  12. Aronson J, Johnson E, Harp JH (1989) Local bone transportation for treatment of intercalary defects by the Ilizarov technique. Biomechanical and clinical considerations. Clin Orthop Relat Res 243:71–79

    Google Scholar 

  13. Bauer TW, Muschler GF (2000) Bone graft materials. An overview of the basic science. Clin Orthop Relat Res 371:10–27

    Article  Google Scholar 

  14. Beris AE, Lykissas MG, Korompilias AV, Vekris MD, Mitsionis GI, Malizos KN, Soucacos PN (2011) Vascularized fibula transfer for lower limb reconstruction. Microsurgery 31:205–211. doi:10.1002/micr.20841

    Article  PubMed  Google Scholar 

  15. Bilic R et al (2006) Osteogenic protein-1 (BMP-7) accelerates healing of scaphoid non-union with proximal pole sclerosis. Int Orthop 30:128–134. doi:10.1007/s00264-005-0045-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blum AL, BongioVanni JC, Morgan SJ, Flierl MA, dos Reis FB (2010) Complications associated with distraction osteogenesis for infected nonunion of the femoral shaft in the presence of a bone defect: a retrospective series. J Bone Jt Surg Br 92:565–570. doi:10.1302/0301-620X.92B4.23475

    Article  CAS  Google Scholar 

  17. Bullens PH, Minderhoud NM, de Waal Malefijt MC, Veth RP, Buma P, Schreuder HW (2009) Survival of massive allografts in segmental oncological bone defect reconstructions. Int Orthop 33:757–760. doi:10.1007/s00264-008-0700-2

    Article  CAS  PubMed  Google Scholar 

  18. Ceruso M, Taddei F, Bigazzi P, Manfrini M (2008) Vascularised fibula graft inlaid in a massive bone allograft: considerations on the bio-mechanical behaviour of the combined graft in segmental bone reconstructions after sarcoma resection. Injury 39(Suppl 3):S68–74. doi:10.1016/j.injury.2008.05.014

    Article  PubMed  Google Scholar 

  19. Cha JK, Lee JS, Kim MS, Choi SH, Cho KS, Jung UW (2014) Sinus augmentation using BMP-2 in a bovine hydroxyapatite/collagen carrier in dogs. J Clin Periodontol 41:86–93. doi:10.1111/jcpe.12174

    Article  CAS  PubMed  Google Scholar 

  20. Chaddha M, Gulati D, Singh AP, Singh AP, Maini L (2010) Management of massive posttraumatic bone defects in the lower limb with the Ilizarov technique. Acta Orthop Belg 76:811–820

    PubMed  Google Scholar 

  21. Chakkalakal DA (2005) Alcohol-induced bone loss and deficient bone repair. Alcohol Clin Exp Res 29:2077–2090

    Article  PubMed  Google Scholar 

  22. Chotel F, Nguiabanda L, Braillon P, Kohler R, Berard J, Abelin-Genevois K (2012) Induced membrane technique for reconstruction after bone tumor resection in children: a preliminary study. Orthop Traumatol Surg Res OTSR 98:301–308. doi:10.1016/j.otsr.2011.11.008

    Article  CAS  PubMed  Google Scholar 

  23. Claes L, Recknagel S, Ignatius A (2012) Fracture healing under healthy and inflammatory conditions Nature reviews. Rheumatology 8:133–143. doi:10.1038/nrrheum.2012.1

    CAS  PubMed  Google Scholar 

  24. Conway JD (2010) Autograft and nonunions: morbidity with intramedullary bone graft versus iliac crest bone graft. Orthop Clin N Am 41:75–84. doi:10.1016/j.ocl.2009.07.006 (table of contents)

    Article  Google Scholar 

  25. Cuthbert RJ, Churchman SM, Tan HB, McGonagle D, Jones E, Giannoudis PV (2013) Induced periosteum a complex cellular scaffold for the treatment of large bone defects. Bone 57:484–492. doi:10.1016/j.bone.2013.08.009

    Article  CAS  PubMed  Google Scholar 

  26. Daftari TK, Whitesides TE Jr, Heller JG, Goodrich AC, McCarey BE, Hutton WC (1994) Nicotine on the revascularization of bone graft. Exp Study Rabbits Spine 19:904–911

    CAS  Google Scholar 

  27. de Boer HH, Wood MB (1989) Bone changes in the vascularised fibular graft. J Bone Jt Surg Br 71:374–378

    Article  Google Scholar 

  28. de Boer HH, Wood MB, Hermans J (1990) Reconstruction of large skeletal defects by vascularized fibula transfer. Factors that influenced the outcome of union in 62 cases. Int Orthop 14:121–128

    Article  PubMed  Google Scholar 

  29. Dimitriou R, Mataliotakis GI, Angoules AG, Kanakaris NK, Giannoudis PV (2011) Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury 42(Suppl 2):S3–15. doi:10.1016/j.injury.2011.06.015

    Article  PubMed  Google Scholar 

  30. Dimitriou R, Tsiridis E, Giannoudis PV (2005) Current concepts of molecular aspects of bone healing. Injury 36:1392–1404. doi:10.1016/j.injury.2005.07.019

    Article  PubMed  Google Scholar 

  31. Emara KM, Ghafar KA, Al Kersh MA (2011) Methods to shorten the duration of an external fixator in the management of tibial infections. World J Orthop 2:85–92. doi:10.5312/wjo.v2.i9.85

  32. Eward WC, Kontogeorgakos V, Levin LS, Brigman BE (2010) Free vascularized fibular graft reconstruction of large skeletal defects after tumor resection. Clin Orthop Relat Res 468:590–598. doi:10.1007/s11999-009-1053-x

    Article  PubMed  Google Scholar 

  33. Farfalli GL, Aponte-Tinao L, Lopez-Millan L, Ayerza MA, Muscolo DL (2012) Clinical and functional outcomes of tibial intercalary allografts after tumor resection. Orthopedics 35:e391–396. doi:10.3928/01477447-20120222-25

    Article  PubMed  Google Scholar 

  34. Foulk DA, Szabo RM (1995) Diaphyseal humerus fractures: natural history and occurrence of nonunion. Orthopedics 18:333–335

    CAS  PubMed  Google Scholar 

  35. Fourman MS, Borst EW, Bogner E, Rozbruch SR, Fragomen AT (2014) Recombinant human BMP-2 increases the incidence and rate of healing in complex ankle arthrodesis. Clin Orthop Relat Res 472:732–739. doi:10.1007/s11999-013-3261-7

    Article  PubMed  Google Scholar 

  36. Friedlaender GE et al (2001) Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Jt Surg Am 83-A(Suppl 1):S151–S158

    Google Scholar 

  37. Friedrich JB, Moran SL, Bishop AT, Wood CM, Shin AY (2008) Free vascularized fibular graft salvage of complications of long-bone allograft after tumor reconstruction. J Bone Jt Surg Am 90:93–100. doi:10.2106/JBJS.G.00551

    Article  Google Scholar 

  38. Garrison KR et al (2010) Bone morphogenetic protein (BMP) for fracture healing in adults. Cochrane Database Syst Rev. doi:10.1002/14651858.CD006950.pub2

    PubMed  Google Scholar 

  39. Gaston MS, Simpson AH (2007) Inhibition of fracture healing. J Bone Jt Surg Br 89:1553–1560. doi:10.1302/0301-620X.89B12.19671

    Article  CAS  Google Scholar 

  40. Giannoudis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: an update. Injury 36(Suppl 3):S20–27. doi:10.1016/j.injury.2005.07.029

    Article  PubMed  Google Scholar 

  41. Giannoudis PV, Faour O, Goff T, Kanakaris N, Dimitriou R (2011) Masquelet technique for the treatment of bone defects: tips-tricks and future directions. Injury 42:591–598. doi:10.1016/j.injury.2011.03.036

    Article  PubMed  Google Scholar 

  42. Goel A, Sangwan SS, Siwach RC, Ali AM (2005) Percutaneous bone marrow grafting for the treatment of tibial non-union. Injury 36:203–206. doi:10.1016/j.injury.2004.01.009

    Article  PubMed  Google Scholar 

  43. Goulet JA, Senunas LE, DeSilva GL, Greenfield ML (1997) Autogenous iliac crest bone graft. Complications and functional assessment. Clin Orthop Relat Res 339:76–81

    Article  Google Scholar 

  44. Gouron R, Deroussen F, Plancq MC, Collet LM (2013) Bone defect reconstruction in children using the induced membrane technique: a series of 14 cases. Orthop Traumatol Surg Res OTSR 99:837–843. doi:10.1016/j.otsr.2013.05.005

    Article  CAS  PubMed  Google Scholar 

  45. Gouron R, Petit L, Boudot C, Six I, Brazier M, Kamel S, Mentaverri R (2014) Osteoclasts and their precursors are present in the induced-membrane during bone reconstruction using the Masquelet technique. J Tissue Eng Regen Med. doi:10.1002/term.1921

    PubMed  Google Scholar 

  46. Govender S et al (2002) Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Jt Surg Am 84-A:2123–2134

    Article  Google Scholar 

  47. Green SA (1994) Skeletal defects. A comparison of bone grafting and bone transport for segmental skeletal defects. Clin Orthop Relat Res 301:111–117

    Google Scholar 

  48. Haverstock BD, Mandracchia VJ (1998) Cigarette smoking and bone healing: implications in foot and ankle surgery. J Foot Ankle Surg 37:69–74 (discussion 78)

    Article  CAS  PubMed  Google Scholar 

  49. Heitmann C, Erdmann D, Levin LS (2002) Treatment of segmental defects of the humerus with an osteoseptocutaneous fibular transplant. J Bone Jt Surg Am 84-A:2216–2223

    Article  CAS  Google Scholar 

  50. Henrich D et al (2013) Establishment and characterization of the Masquelet induced membrane technique in a rat femur critical-sized defect model. J Tissue Eng Regen Med. doi:10.1002/term.1826

    PubMed  Google Scholar 

  51. Hernandez RK, Do TP, Critchlow CW, Dent RE, Jick SS (2012) Patient-related risk factors for fracture-healing complications in the United Kingdom general practice research database. Acta Orthop 83:653–660. doi:10.3109/17453674.2012.747054

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hernigou P, Mathieu G, Poignard A, Manicom O, Beaujean F, Rouard H (2006) Percutaneous autologous bone-marrow grafting for nonunions. Surgical technique. J Bone Jt Surg Am 88(Suppl 1 Pt 2):322–327. doi:10.2106/JBJS.F.00203

    Article  Google Scholar 

  53. Higgins TF, Casey V, Bachus K (2007) Cortical heat generation using an irrigating/aspirating single-pass reaming vs conventional stepwise reaming. J Orthop Trauma 21:192–197. doi:10.1097/BOT.0b013e318038d952

    Article  PubMed  Google Scholar 

  54. Houdek MT, Wagner ER, Stans AA, Shin AY, Bishop AT, Sim FH, Moran SL (2016) What is the outcome of allograft and intramedullary free fibula (capanna technique) in pediatric and adolescent patients with bone tumors? Clin Orthop Relat Res 474:660–668. doi:10.1007/s11999-015-4204-2

    Article  PubMed  Google Scholar 

  55. Huddleston PM, Steckelberg JM, Hanssen AD, Rouse MS, Bolander ME, Patel R (2000) Ciprofloxacin inhibition of experimental fracture healing. J Bone Jt Surg Am 82:161–173

    Article  CAS  Google Scholar 

  56. Ja K (1934) The effect of a local calcium depot on osteogenesis and healing of fractures. J Bone Jt Surg Am 16:176–184

    Google Scholar 

  57. Jin HH, Kim DH, Kim TW, Shin KK, Jung JS, Park HC, Yoon SY (2012) In vivo evaluation of porous hydroxyapatite/chitosan-alginate composite scaffolds for bone tissue engineering. Int J Biol Macromol 51:1079–1085. doi:10.1016/j.ijbiomac.2012.08.027

    Article  CAS  PubMed  Google Scholar 

  58. Jun SH, Lee EJ, Jang TS, Kim HE, Jang JH, Koh YH (2013) Bone morphogenic protein-2 (BMP-2) loaded hybrid coating on porous hydroxyapatite scaffolds for bone tissue engineering. J Mater Sci Mater Med 24:773–782. doi:10.1007/s10856-012-4822-0

    Article  CAS  PubMed  Google Scholar 

  59. Kanakaris NK et al (2009) Application of bone morphogenetic proteins to femoral non-unions: a 4-year multicentre experience. Injury 40(Suppl 3):S54–S61. doi:10.1016/S0020-1383(09)70013-0

    Article  PubMed  Google Scholar 

  60. Kaneda K, Kurakami C, Minami A (1988) Free vascularized fibular strut graft in the treatment of kyphosis. Spine 13:1273–1277

    Article  CAS  PubMed  Google Scholar 

  61. Kang Y, Scully A, Young DA, Kim S, Tsao H, Sen M, Yang Y (2011) Enhanced mechanical performance and biological evaluation of a PLGA coated beta-TCP composite scaffold for load-bearing applications. Eur Polym J 47:1569–1577. doi:10.1016/j.eurpolymj.2011.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Karger C, Kishi T, Schneider L, Fitoussi F, Masquelet AC, French Society of Orthopaedic S, Traumatology (2012) Treatment of posttraumatic bone defects by the induced membrane technique. Orthop Traumatol Surg Res OTSR 98:97–102. doi:10.1016/j.otsr.2011.11.001

    Article  CAS  PubMed  Google Scholar 

  63. Keating JF, Simpson AH, Robinson CM (2005) The management of fractures with bone loss. J Bone Jt Surg Br 87:142–150

    Article  CAS  Google Scholar 

  64. Kim DH et al (2009) Prospective study of iliac crest bone graft harvest site pain and morbidity. Spine J 9:886–892. doi:10.1016/j.spinee.2009.05.006

    Article  PubMed  Google Scholar 

  65. Kline AJ, Gruen GS, Pape HC, Tarkin IS, Irrgang JJ, Wukich DK (2009) Early complications following the operative treatment of pilon fractures with and without diabetes. Foot Ankle Int 30:1042–1047. doi:10.3113/FAI.2009.1042

    Article  PubMed  Google Scholar 

  66. Kyro A, Usenius JP, Aarnio M, Kunnamo I, Avikainen V (1993) Are smokers a risk group for delayed healing of tibial shaft fractures? Ann Chir Gynaecol 82:254–262

    CAS  PubMed  Google Scholar 

  67. Lee KS, Han SB, Baek JR (2004) Free vascularized osteocutaneous fibular graft to the tibia in 51 consecutive cases. J Reconstr Microsurg 20:277–284. doi:10.1055/s-2004-824884

    Article  PubMed  Google Scholar 

  68. Li J, Wang Z, Guo Z, Chen GJ, Fu J, Pei GX (2010) The use of allograft shell with intramedullary vascularized fibula graft for intercalary reconstruction after diaphyseal resection for lower extremity bony malignancy. J Surg Oncol 102:368–374. doi:10.1002/jso.21620

    Article  PubMed  Google Scholar 

  69. Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M (2005) Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26:3919–3928. doi:10.1016/j.biomaterials.2004.09.062

    Article  CAS  PubMed  Google Scholar 

  70. Liang K, Xiang Z, Chen S, Cen S, Zhong G, Yi M, Huang F (2012) Folded free vascularized fibular grafts for the treatment of subtrochanteric fractures complicated with segmental bone defects. J Trauma Acute Care Surg 72:1404–1410. doi:10.1097/TA.0b013e31824473ce

    Article  PubMed  Google Scholar 

  71. Lin CH, Wei FC, Chen HC, Chuang DC (1999) Outcome comparison in traumatic lower-extremity reconstruction by using various composite vascularized bone transplantation. Plast Reconstr Surg 104:984–992

    Article  CAS  PubMed  Google Scholar 

  72. Ling XF, Peng X (2012) What is the price to pay for a free fibula flap? A systematic review of donor-site morbidity following free fibula flap surgery. Plast Reconstr Surg 129:657–674. doi:10.1097/PRS.0b013e3182402d9a

    Article  CAS  PubMed  Google Scholar 

  73. Liu H, Hu G, Shang P, Shen Y, Nie P, Peng L, Xu H (2013) Histological characteristics of induced membranes in subcutaneous, intramuscular sites and bone defect. Orthop Traumatol Surg Res OTSR 99:959–964. doi:10.1016/j.otsr.2013.08.009

    Article  CAS  PubMed  Google Scholar 

  74. Liu Y, Ming L, Luo H, Liu W, Zhang Y, Liu H, Jin Y (2013) Integration of a calcined bovine bone and BMSC-sheet 3D scaffold and the promotion of bone regeneration in large defects. Biomaterials 34:9998–10006. doi:10.1016/j.biomaterials.2013.09.040

    Article  CAS  PubMed  Google Scholar 

  75. Loder RT (1988) The influence of diabetes mellitus on the healing of closed fractures. Clin Orthop Relat Res 232:210–216

    Google Scholar 

  76. Lowe JA, Della Rocca GJ, Murtha Y, Liporace FA, Stover MD, Nork SE, Crist BD (2010) Complications associated with negative pressure reaming for harvesting autologous bone graft: a case series. J Orthop Trauma 24:46–52. doi:10.1097/BOT.0b013e31819c0ccb

    Article  PubMed  Google Scholar 

  77. Lyons FG, Gleeson JP, Partap S, Coghlan K, O'Brien FJ (2014) Novel microhydroxyapatite particles in a collagen scaffold: a bioactive bone void filler? Clin Orthop Relat Res 472(4):1318–1328

  78. Maeda M, Bryant MH, Yamagata M, Li G, Earle JD, Chao EY (1988) Effects of irradiation on cortical bone and their time-related changes. A biomechanical and histomorphological study. J Bone Jt Surg Am 70:392–399

    Article  CAS  Google Scholar 

  79. Malizos KN, Zalavras CG, Soucacos PN, Beris AE, Urbaniak JR (2004) Free vascularized fibular grafts for reconstruction of skeletal defects. J Am Acad Orthop Surg 12:360–369

    Article  PubMed  Google Scholar 

  80. Marcacci M, Kon E, Moukhachev V, Lavroukov A, Kutepov S, Quarto R, Mastrogiacomo M, Cancedda R (2007) Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 13(5):947–955

  81. Mariner PD, Wudel JM, Miller DE, Genova EE, Streubel SO, Anseth KS (2013) Synthetic hydrogel scaffold is an effective vehicle for delivery of INFUSE (rhBMP2) to critical-sized calvaria bone defects in rats. J Orthop Res 31:401–406. doi:10.1002/jor.22243

    Article  CAS  PubMed  Google Scholar 

  82. Masquelet AC (2003) Muscle reconstruction in reconstructive surgery: soft tissue repair and long bone reconstruction Langenbeck’s archives of surgery / Deutsche Gesellschaft fur. Chirurgie 388:344–346. doi:10.1007/s00423-003-0379-1

    CAS  Google Scholar 

  83. Masquelet AC, Begue T (2010) The concept of induced membrane for reconstruction of long bone defects. Orthop Clin N Am 41:27–37. doi:10.1016/j.ocl.2009.07.011 (table of contents)

    Article  Google Scholar 

  84. Masquelet AC, Fitoussi F, Begue T, Muller GP (2000) Reconstruction of the long bones by the induced membrane and spongy autograft. Ann Chir Plast Esthet 45:346–353

    CAS  PubMed  Google Scholar 

  85. McBride JCM, Banks RE, Taylor D, Ryan J (1993) Healing of segmental bone defects in goat tibia. J Invest Surg 6:369

    Google Scholar 

  86. McCullen SD, Chow AG, Stevens MM (2011) In vivo tissue engineering of musculoskeletal tissues. Curr Opin Biotechnol 22:715–720. doi:10.1016/j.copbio.2011.05.001

    Article  CAS  PubMed  Google Scholar 

  87. Mercado-Pagan AE, Kang Y, Ker DF, Park S, Yao J, Bishop J, Yang Y (2013) Synthesis and characterization of novel elastomeric poly(D, L-lactide urethane) maleate composites for bone tissue engineering. Eur Polym J 49:3337–3349. doi:10.1016/j.eurpolymj.2013.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mercado-Pagan AE, Stahl AM, Shanjani Y, Yang Y (2015) Vascularization in bone tissue engineering constructs. Ann Biomed Eng 43:718–729. doi:10.1007/s10439-015-1253-3

    Article  PubMed  PubMed Central  Google Scholar 

  89. Minami A, Kasashima T, Iwasaki N, Kato H, Kaneda K (2000) Vascularised fibular grafts. An experience of 102 patients. J Bone Jt Surg Br 82:1022–1025

    Article  CAS  Google Scholar 

  90. Muramatsu K, Ihara K, Shigetomi M, Kawai S (2004) Femoral reconstruction by single, folded or double free vascularised fibular grafts. Br J Plast Surg 57:550–555. doi:10.1016/j.bjps.2003.08.021

    Article  CAS  PubMed  Google Scholar 

  91. Muscolo DL (2012) Accurate 3-dimensional preoperative planning and resection in orthopedic oncology. Orthopedics 35:7–8. doi:10.3928/01477447-20111122-01

    Article  PubMed  Google Scholar 

  92. Muscolo DL, Ayerza MA, Aponte-Tinao LA (2006) Massive allograft use in orthopedic oncology. Orthop Clin N Am 37:65–74. doi:10.1016/j.ocl.2005.08.003

    Article  Google Scholar 

  93. Ng VY (2012) Risk of disease transmission with bone allograft. Orthopedics 35:679–681. doi:10.3928/01477447-20120725-04

    Article  PubMed  Google Scholar 

  94. Noaman HH (2013) Management of upper limb bone defects using free vascularized osteoseptocutaneous fibular bone graft. Ann Plast Surg 71:503–509. doi:10.1097/SAP.0b013e3182a1aff0

    Article  CAS  PubMed  Google Scholar 

  95. Nusbickel FR, Dell PC, McAndrew MP, Moore MM (1989) Vascularized autografts for reconstruction of skeletal defects following lower extremity trauma. Rev Clin Orthop Relat Res 243:65–70

  96. Ozaksar K, Sugun TS, Toros T, Gurbuz Y, Kayalar M, Ozerkan F (2012) Free vascularized fibular grafts in type 3 open tibia fractures. Acta orthopaedica et traumatologica turcica 46:430–437

    Article  PubMed  Google Scholar 

  97. Palatnik Y, Rozbruch SR (2011) Femoral reconstruction using external fixation. Adv Orthop 2011:967186. doi:10.4061/2011/967186

    Article  PubMed  PubMed Central  Google Scholar 

  98. Paley D (1990) Problems, obstacles, and complications of limb lengthening by the Ilizarov technique. Clin Orthop Relat Res 250:81–104

    Google Scholar 

  99. Paley D, Catagni M, Argnani F, Prevot J, Bell D, Armstrong P (1992) Treatment of congenital pseudoarthrosis of the tibia using the Ilizarov technique. Clin Orthop Relat Res 250:81–93

    Google Scholar 

  100. Paley D, Herzenberg JE, Paremain G, Bhave A (1997) Femoral lengthening over an intramedullary nail. A matched-case comparison with Ilizarov femoral lengthening. J Bone Jt Surg Am 79:1464–1480

    Article  CAS  Google Scholar 

  101. Paley D, Maar DC (2000) Ilizarov bone transport treatment for tibial defects. J Orthop Trauma 14:76–85

    Article  CAS  PubMed  Google Scholar 

  102. Papakostidis C, Bhandari M, Giannoudis PV (2013) Distraction osteogenesis in the treatment of long bone defects of the lower limbs: effectiveness, complications and clinical results; a systematic review and meta-analysis. Bone Jt J 95-B:1673–1680. doi:10.1302/0301-620X.95B12.32385

    Article  CAS  Google Scholar 

  103. Pape HC, Zelle BA, Hildebrand F, Giannoudis PV, Krettek C, van Griensven M (2005) Reamed femoral nailing in sheep: does irrigation and aspiration of intramedullary contents alter the systemic response? J Bone Jt Surg Am 87:2515–2522. doi:10.2106/JBJS.D.02024

    Google Scholar 

  104. Patel RA, Wilson RF, Patel PA, Palmer RM (2013) The effect of smoking on bone healing: A systematic review. Bone Jt Res 2:102–111. doi:10.1302/2046-3758.26.2000142

    Article  CAS  Google Scholar 

  105. Pelissier P, Bollecker V, Martin D, Baudet J (2002) Foot reconstruction with the “bi-Masquelet” procedure. Ann Chir Plast Esthet 47:304–307

    Article  CAS  PubMed  Google Scholar 

  106. Pelissier P, Masquelet AC, Bareille R, Pelissier SM, Amedee J (2004) Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. J Orthop Res 22:73–79. doi:10.1016/S0736-0266(03)00165-7

    Article  CAS  PubMed  Google Scholar 

  107. Porter SE, Hanley EN Jr (2001) The musculoskeletal effects of smoking. J Ame Acad Orthop Surg 9:9–17

    Article  CAS  Google Scholar 

  108. Qi Y, Sun HT, Fan YG, Li FM, Lin ZS (2016) Do stress fractures induce hypertrophy of the grafted fibula? A report of three cases received free vascularized fibular graft treatment for tibial defects. Chin J Traumatol = Zhonghua chuang shang za zhi / Chin Med Assoc 19:179–181

    Google Scholar 

  109. Quinlan E, Thompson EM, Matsiko A, O'Brien FJ, Lopez-Noriega A (2015) Long-term controlled delivery of rhBMP-2 from collagen-hydroxyapatite scaffolds for superior bone tissue regeneration. J Control Release 207:112–119

  110. Qvick LM, Ritter CA, Mutty CE, Rohrbacher BJ, Buyea CM, Anders MJ (2013) Donor site morbidity with reamer-irrigator-aspirator (RIA) use for autogenous bone graft harvesting in a single centre 204 case series. Injury 44:1263–1269. doi:10.1016/j.injury.2013.06.008

    Article  PubMed  Google Scholar 

  111. Rabitsch K, Maurer-Ertl W, Pirker-Fruhauf U, Wibmer C, Leithner A (2013) Intercalary reconstructions with vascularised fibula and allograft after tumour resection in the lower limb. Sarcoma 2013:160295. doi:10.1155/2013/160295

    PubMed  PubMed Central  Google Scholar 

  112. Reichert JC et al (2012) A tissue engineering solution for segmental defect regeneration in load-bearing long bones. Sci Transl Med 4:141ra193. doi:10.1126/scitranslmed.3003720

    Article  CAS  Google Scholar 

  113. Repo JP, Sommarhem A, Roine RP, Sintonen H, Halonen T, Tukiainen E (2016) Free vascularized fibular graft is reliable in upper extremity long-bone reconstruction with good long-term outcomes. J Reconstr Microsurg. doi:10.1055/s-0036-1581075

    Google Scholar 

  114. Retzepi M, Donos N (2010) The effect of diabetes mellitus on osseous healing. Clin Oral Implant Res 21:673–681. doi:10.1111/j.1600-0501.2010.01923.x

    Article  CAS  Google Scholar 

  115. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431. doi:10.1016/j.biomaterials.2006.01.039

    Article  CAS  PubMed  Google Scholar 

  116. Riebel GD, Boden SD, Whitesides TE, Hutton WC (1995) The effect of nicotine on incorporation of cancellous bone graft in an animal model. Spine 20:2198–2202

    Article  CAS  PubMed  Google Scholar 

  117. Ronga M, Ferraro S, Fagetti A, Cherubino M, Valdatta L, Cherubino P (2014) Masquelet technique for the treatment of a severe acute tibial bone loss. Injury 45(Suppl 6):S111–115. doi:10.1016/j.injury.2014.10.033

    Article  PubMed  Google Scholar 

  118. Roohani-Esfahani SI, Nouri-Khorasani S, Lu Z, Appleyard R, Zreiqat H (2010) The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites. Biomaterials 31:5498–5509. doi:10.1016/j.biomaterials.2010.03.058

    Article  CAS  PubMed  Google Scholar 

  119. Sales de Gauzy J et al (2012) Traumatic diaphyseal bone defects in children. Orthop Traumatol Surg Res OTSR 98:220–226. doi:10.1016/j.otsr.2012.01.001

    Article  CAS  PubMed  Google Scholar 

  120. Schmidmaier G, Herrmann S, Green J, Weber T, Scharfenberger A, Haas NP, Wildemann B (2006) Quantitative assessment of growth factors in reaming aspirate, iliac crest, and platelet preparation. Bone 39:1156–1163. doi:10.1016/j.bone.2006.05.023

    Article  CAS  PubMed  Google Scholar 

  121. Schmitz JP, Hollinger JO (1986) The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res 205:299–308

  122. Scholz AO, Gehrmann S, Glombitza M, Kaufmann RA, Bostelmann R, Flohe S, Windolf J (2015) Reconstruction of septic diaphyseal bone defects with the induced membrane technique. Injury 46(Suppl 4):S121–124. doi:10.1016/S0020-1383(15)30030-9

    Article  PubMed  Google Scholar 

  123. Seebach C, Henrich D, Kahling C, Wilhelm K, Tami AE, Alini M, Marzi I (2010) Endothelial progenitor cells and mesenchymal stem cells seeded onto beta-TCP granules enhance early vascularization and bone healing in a critical-sized bone defect in rats. Tissue Eng Part A 16:1961–1970. doi:10.1089/ten.TEA.2009.0715

    Article  CAS  PubMed  Google Scholar 

  124. Shekaran A, Garcia JR, Clark AY, Kavanaugh TE, Lin AS, Guldberg RE, Garcia AJ (2014) Bone regeneration using an alpha 2 beta 1 integrin-specific hydrogel as a BMP-2 delivery vehicle. Biomaterials 35:5453–5461. doi:10.1016/j.biomaterials.2014.03.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Shi Y et al (2016) Evaluation of a novel HA/ZrO2-based porous bioceramic artificial vertebral body combined with a rhBMP-2/chitosan slow-release hydrogel. PLoS ONE 11:e0157698. doi:10.1371/journal.pone.0157698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Song HR, Kale A, Park HB, Koo KH, Chae DJ, Oh CW, Chung DW (2003) Comparison of internal bone transport and vascularized fibular grafting for femoral bone defects. J Orthop Trauma 17:203–211

    Article  PubMed  Google Scholar 

  127. Soucacos PN, Kokkalis ZT, Piagkou M, Johnson EO (2013) Vascularized bone grafts for the management of skeletal defects in orthopaedic trauma and reconstructive surgery. Injury 44(Suppl 1):S70–75. doi:10.1016/S0020-1383(13)70016-0

    Article  PubMed  Google Scholar 

  128. Soucacos PN, Korompilias AV, Vekris MD, Zoubos A, Beris AE (2011) The free vascularized fibular graft for bridging large skeletal defects of the upper extremity. Microsurgery 31:190–197. doi:10.1002/micr.20862

    Article  PubMed  Google Scholar 

  129. Stevenson S (1998) Enhancement of fracture healing with autogenous and allogeneic bone grafts. Clin Orthop Relat Res 355:S239–246

    Article  Google Scholar 

  130. Strong DM et al (1996) Immunologic responses in human recipients of osseous and osteochondral allografts. Clin Orthop Relat Res 326:107–114

    Article  Google Scholar 

  131. Tatara AM, Wong ME, Mikos AG (2014) In vivo bioreactors for mandibular reconstruction. J Dent Res 93:1196–1202. doi:10.1177/0022034514547763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Tierney CM, Haugh MG, Liedl J, Mulcahy F, Hayes B, O’Brien FJ (2009) The effects of collagen concentration and crosslink density on the biological, structural and mechanical properties of collagen-GAG scaffolds for bone tissue engineering. J Mech Behav Biomed Mater 2:202–209. doi:10.1016/j.jmbbm.2008.08.007

    Article  PubMed  Google Scholar 

  133. Vail TP, Urbaniak JR (1996) Donor-site morbidity with use of vascularized autogenous fibular grafts. J Bone Jt Surg Am 78:204–211

    Article  CAS  Google Scholar 

  134. Villa MM, Wang L, Huang J, Rowe DW, Wei M (2015) Bone tissue engineering with a collagen-hydroxyapatite scaffold and culture expanded bone marrow stromal cells. J Biomed Mater Res B Appl Biomater 103(2):243–253

  135. Villemagne T, Bonnard C, Accadbled F, L’Kaissi M, de Billy B, de Gauzy SJ (2011) Intercalary segmental reconstruction of long bones after malignant bone tumor resection using primary methyl methacrylate cement spacer interposition and secondary bone grafting: the induced membrane technique. J Pediatr Orthop 31:570–576. doi:10.1097/BPO.0b013e31821ffa82

    Article  PubMed  Google Scholar 

  136. Wong TM, Lau TW, Li X, Fang C, Yeung K, Leung F (2014) Masquelet technique for treatment of posttraumatic bone defects. TheScientificWorldJournal 2014:710302. doi:10.1155/2014/710302

    PubMed  PubMed Central  Google Scholar 

  137. Wood MB, Bishop AT (2007) Massive bone defects of the upper limb: reconstruction by vascularized bone transfer. Hand Clin 23:49–56. doi:10.1016/j.hcl.2007.01.002

    Article  PubMed  Google Scholar 

  138. Woon CY, Chong KW, Wong MK (2010) Induced membranes—a staged technique of bone-grafting for segmental bone loss: a report of two cases and a literature review. J Bone Jt Surg Am 92:196–201. doi:10.2106/JBJS.I.00273

    Article  Google Scholar 

  139. Yajima H, Tamai S, Mizumoto S, Ono H (1993) Vascularised fibular grafts for reconstruction of the femur. J Bone Jt Surg Br 75:123–128

    Article  CAS  Google Scholar 

  140. Zappaterra T et al (2011) Induced membrane technique for the reconstruction of bone defects in upper limb. A prospective single center study of nine cases. Chir Main 30:255–263. doi:10.1016/j.main.2011.06.005

    Article  CAS  PubMed  Google Scholar 

  141. Zhen P, Hu YY, Luo ZJ, Liu XY, Lu H, Li XS (2010) One-stage treatment and reconstruction of Gustilo Type III open tibial shaft fractures with a vascularized fibular osteoseptocutaneous flap graft. J Orthop Trauma 24:745–751. doi:10.1097/BOT.0b013e3181d88a07

    Article  PubMed  Google Scholar 

  142. Zigdon-Giladi H, Bick T, Lewinson D, Machtei EE (2015) Co-transplantation of endothelial progenitor cells and mesenchymal stem cells promote neovascularization and bone regeneration. Clin Implant Dent Relat Res 17:353–359. doi:10.1111/cid.12104

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Generous support from Kent Thiry and Denise O’Leary, Boswell Foundation, NIH R01AR057837 (NIAMS), and NIH 1U01AR069395 (NIAMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Gardner.

Ethics declarations

Conflict of interest

Drs. Roddy, DeBaun, Daoud, and Yang have no conflicts of interest to declare. Dr. Gardner reports personal fees from DePuy-Synthes, personal fees from KCI, personal fees from Miami Medical, personal fees from Biocomposites, personal fees from Pacira, outside the submitted work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roddy, E., DeBaun, M.R., Daoud-Gray, A. et al. Treatment of critical-sized bone defects: clinical and tissue engineering perspectives. Eur J Orthop Surg Traumatol 28, 351–362 (2018). https://doi.org/10.1007/s00590-017-2063-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-017-2063-0

Keywords

Navigation