Skip to main content
Log in

Utilization of distal radius and ulna classification scheme in predicting growth peak and curve progression in idiopathic scoliosis girls undergoing bracing treatment

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Distal radius and ulna (DRU) classification scheme has been proposed for predicting skeletal maturity in patients with idiopathic scoliosis (IS). However, the utilization of DRU classification scheme in the assessment of growth peak and curve progression in IS was still inconclusive. This study aimed to correlate the distal radius and ulna stages with several indicators for growth potential and to evaluate the predictive value of DRU system for curve progression in braced female IS patients.

Methods

This was a consecutive longitudinal study including physically immature IS girls receiving standardized bracing treatment and regularly followed up every 3–6 months until brace weaning. The following data of each visit were collected: chronologic age, standing height, Cobb angle, spinal length, Risser sign, digital skeletal age (DSA) scores and DRU scores. The height velocity (HV), spinal growth velocity (SGV) and angle velocity (AV) of each visit were calculated. The correlation among radius stage, ulna stage, Risser sign, height, spinal length, HV, SGV and AV was studied.

Results

Forty braced IS girls with 349 longitudinal whole spine X-rays were reviewed. The average DRU scores at initial visit were R6.5 ± 1.1 and U4.5 ± 1.2 for radius and ulna, respectively. Both the radius stages between R5 and R8 and ulna stages between U3 and U6 indicated high SGV and high HV. The DSA scores were 402.1 ± 48.8 and 430.8 ± 44.4 at R7 and R8, respectively. The AV values were − 5.9 ± 12.4°/y and − 0.4 ± 1.5°/y at R5 and R6, which increased to 5.9 ± 17.3°/y, 3.1 ± 15.7°/y and 4.2 ± 12.2°/y at R7, R8 and R9, respectively. The DSA scores were 387.3 ± 65.7 for U5 and 432.9 ± 48.5 for U6, respectively. The AV values were − 3.1 ± 0.3°/y at U3, − 1.7 ± 9.3°/y at U4, 2.3 ± 16.1°/y at U5, 5.4 ± 15.5°/y at U6 and 4.4 ± 12.9°/y at U7.

Conclusions

Both distal radius and ulna scores correlate with the longitudinal growth potential, and thus, the DRU scoring scheme is an alternative predictor for growth potential and curve progression in girls with IS.

Graphic abstract

These slides can be retrieved under Electronic Supplementary Material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sun X, Wang B, Qiu Y, Zhu ZZ, Zhu F, Yu Y, Qian BP, Ma WW, Liu Z, Mao SH (2010) Outcomes and predictors of brace treatment for girls with adolescent idiopathic scoliosis. Orthop Surg 2:285–290. https://doi.org/10.1111/j.1757-7861.2010.00101.x

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lenke LG, Betz RR, Harms J, Bridwell KH, Clements DH, Lowe TG, Blanke K (2001) Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am 83-A:1169–1181

    Article  Google Scholar 

  3. Lonstein JE, Winter RB (1994) The Milwaukee brace for the treatment of adolescent idiopathic scoliosis. A review of one thousand and twenty patients. J Bone Joint Surg Am 76:1207–1221

    Article  CAS  Google Scholar 

  4. Nault ML, Parent S, Phan P, Roy-Beaudry M, Labelle H, Rivard M (2010) A modified Risser grading system predicts the curve acceleration phase of female adolescent idiopathic scoliosis. J Bone Joint Surg Am 92:1073–1081. https://doi.org/10.2106/jbjs.h.01759

    Article  PubMed  Google Scholar 

  5. Wever DJ, Tonseth KA, Veldhuizen AG, Cool JC, van Horn JR (2000) Curve progression and spinal growth in brace treated idiopathic scoliosis. Clinical Orthop Relat Res 377:169–179

    Article  Google Scholar 

  6. Mao SH, Li HB, Jiang J, Sun X, Cheng JC, Qiu Y (2011) An updated analysis of pubertal linear growth characteristics and age at menarche in ethnic Chinese. American J Hum Biol 23:132–137. https://doi.org/10.1002/ajhb.21116

    Article  Google Scholar 

  7. Hung ALH, Chau WW, Shi B, Chow SK, Yu FYP, Lam TP, Ng BKW, Qiu Y, Cheng JCY (2017) Thumb ossification composite index (TOCI) for predicting peripubertal skeletal maturity and peak height velocity in idiopathic scoliosis: a validation study of premenarchal girls with adolescent idiopathic scoliosis followed longitudinally until skeletal maturity. J Bone Joint Surg Am 99:1438–1446. https://doi.org/10.2106/jbjs.16.01078

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hung AL, Shi B, Chow SK, Chau WW, Hung VW, Wong RM, Liu KL, Lam TP, Ng BK, Cheng JC (2018) Validation study of the thumb ossification composite index (TOCI) in idiopathic scoliosis: a stage-to-stage correlation with classic Tanner-Whitehouse and sanders simplified skeletal maturity systems. J Bone Joint Surg Am 100(13):88. https://doi.org/10.2106/jbjs.17.01271

    Article  PubMed  Google Scholar 

  9. Loncar-Dusek M, Pecina M, Prebeg Z (1991) A longitudinal study of growth velocity and development of secondary gender characteristics versus onset of idiopathic scoliosis. Clin Orthop Relat Res 270:278–282

    Google Scholar 

  10. Busscher I, Kingma I, Wapstra FH, Bulstra SK, Verkerke GJ, Veldhuizen AG (2011) The value of shoe size for prediction of the timing of the pubertal growth spurt. Scoliosis 6:1. https://doi.org/10.1186/1748-7161-6-1

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lee WT, Cheung CS, Tse YK, Guo X, Qin L, Lam TP, Ng BK, Cheng JC (2005) Association of osteopenia with curve severity in adolescent idiopathic scoliosis: a study of 919 girls. Osteoporos Int 16:1924–1932. https://doi.org/10.1007/s00198-005-1964-7

    Article  PubMed  Google Scholar 

  12. Tanner JM, Whitehouse RH (1976) Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child 51:170–179

    Article  CAS  Google Scholar 

  13. Tanner JM, Whitehouse RH, Marubini E, Resele LF (1976) The adolescent growth spurt of boys and girls of the Harpenden growth study. Ann Hum Biol 3:109–126

    Article  CAS  Google Scholar 

  14. Sanders JO, Browne RH, McConnell SJ, Margraf SA, Cooney TE, Finegold DN (2007) Maturity assessment and curve progression in girls with idiopathic scoliosis. J Bone Joint Surg Am 89:64–73. https://doi.org/10.2106/jbjs.f.00067

    Article  PubMed  Google Scholar 

  15. Luk KD, Saw LB, Grozman S, Cheung KM, Samartzis D (2014) Assessment of skeletal maturity in scoliosis patients to determine clinical management: a new classification scheme using distal radius and ulna radiographs. Spine J Off J N Am Spine Soc 14:315–325. https://doi.org/10.1016/j.spinee.2013.10.045

    Article  Google Scholar 

  16. Cheung JP, Samartzis D, Cheung PW, Cheung KM, Luk KD (2016) Reliability analysis of the distal radius and ulna classification for assessing skeletal maturity for patients with adolescent idiopathic scoliosis. Global Spine J 6:164–168. https://doi.org/10.1055/s-0035-1557142

    Article  PubMed  Google Scholar 

  17. Xu L, Qiu X, Sun X, Mao S, Liu Z, Qiao J, Qiu Y (2011) Potential genetic markers predicting the outcome of brace treatment in patients with adolescent idiopathic scoliosis. European Spine Journal 20:1757–1764. https://doi.org/10.1007/s00586-011-1874-7

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nachemson AL, Peterson LE (1995) Effectiveness of treatment with a brace in girls who have adolescent idiopathic scoliosis. A prospective, controlled study based on data from the Brace Study of the Scoliosis Research Society. J Bone Joint Surg Am 77:815–822

    Article  CAS  Google Scholar 

  19. Richards BS, Bernstein RM, D’Amato CR, Thompson GH (2005) Standardization of criteria for adolescent idiopathic scoliosis brace studies: SRS Committee on Bracing and Nonoperative Management. Spine 30:2068–2075. https://doi.org/10.1097/01.brs.0000178819.90239.d0discussion 2076–2067

    Article  PubMed  Google Scholar 

  20. Shi B, Mao S, Xu L, Sun X, Zhu Z, Qian B, Liu Z, Cheng JC, Qiu Y (2014) Integrated multi-dimensional maturity assessments predicting the high risk occurrence of peak angle velocity during puberty in progressive female idiopathic scoliosis. J Spinal Disord Tech. https://doi.org/10.1097/bsd.0000000000000203

    Article  PubMed  Google Scholar 

  21. Risser JC (1958) The Iliac apophysis; an invaluable sign in the management of scoliosis. Clin Orthop 11:111–119

    CAS  PubMed  Google Scholar 

  22. Christoforidis A, Badouraki M, Katzos G, Athanassiou-Metaxa M (2007) Bone age estimation and prediction of final height in patients with beta-thalassaemia major: a comparison between the two most common methods. Pediatr Radiol 37:1241–1246. https://doi.org/10.1007/s00247-007-0656-1

    Article  PubMed  Google Scholar 

  23. Parent S, Newton PO, Wenger DR (2005) Adolescent idiopathic scoliosis: etiology, anatomy, natural history, and bracing. Instr Course Lect 54:529–536

    PubMed  Google Scholar 

  24. Ylikoski M (2005) Growth and progression of adolescent idiopathic scoliosis in girls. J Pediatr Orthop B 14:320–324

    Article  Google Scholar 

  25. Katz DE, Durrani AA (2001) Factors that influence outcome in bracing large curves in patients with adolescent idiopathic scoliosis. Spine 26:2354–2361

    Article  CAS  Google Scholar 

  26. Upadhyay SS, Nelson IW, Ho EK, Hsu LC, Leong JC (1995) New prognostic factors to predict the final outcome of brace treatment in adolescent idiopathic scoliosis. Spine 20:537–545

    Article  CAS  Google Scholar 

  27. Peterson LE, Nachemson AL (1995) Prediction of progression of the curve in girls who have adolescent idiopathic scoliosis of moderate severity. Logistic regression analysis based on data from The Brace Study of the Scoliosis Research Society. J Bone Joint Surg Am 77:823–827

    Article  CAS  Google Scholar 

  28. Sanders JO (2007) Maturity indicators in spinal deformity. J Bone Joint Surg Am 89(Suppl 1):14–20. https://doi.org/10.2106/jbjs.f.00318

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The manuscript submitted does not contain information about medical device(s)/drug(s).

Funding

This work was supported by the Natural Science Foundation of Youth Fund Projects of Jiangsu Province (BK20170126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zezhang Zhu.

Ethics declarations

Conflict of interest

All authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 306 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Mao, S., Shi, B. et al. Utilization of distal radius and ulna classification scheme in predicting growth peak and curve progression in idiopathic scoliosis girls undergoing bracing treatment. Eur Spine J 29, 770–778 (2020). https://doi.org/10.1007/s00586-020-06289-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-020-06289-8

Keywords

Navigation