Skip to main content

Advertisement

Log in

Correlation between biomechanical properties of the annulus fibrosus and magnetic resonance imaging (MRI) findings

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To investigate the regional tensile properties of human annulus fibrosus (AF) and relate them to magnetic resonance imaging (MRI) findings.

Methods

44 human cadaveric lumbar spines were harvested (24 male, 20 female, aged 25–64 years). MRI was used to identify Pfirrmann grade of disc degeneration, and Modic changes (MCs). Intervertebral discs were then removed and dissected into five regions: nucleus pulposus, anterior AF, anterolateral AF, lateral AF, and posterolateral AF. Samples for tensile testing (1.5 mm × 1.5 mm × 5 mm) were removed from inner, middle and outer parts of each region.

Results

1969 specimens from 189 discs were stretched to failure. Average tensile stiffness (modulus) increased from 4.80 MPa in the inner AF to 13.0 MPa in the outer AF. Strength (UTS) increased similarly, from 1.18 to 3.29 MPa, whereas elongation at failure decreased, from 49 to 38 %. The only significant change with age was a reduction in UTS in the middle annulus. In contrast, severe grades of disc degeneration were associated with consistent and highly significant reductions in tensile properties. Effects were greatest in the outer AF, where stiffness and strength fell by 29 and 43 %, respectively. Modic changes also were associated with reduced stiffness and strength, but here the effects were greatest in the inner and middle AF.

Conclusion

Weakening of degenerated AF may be caused by accumulating structural defects, and enzymatic degradation. MRI has the potential to identify local weakening of the AF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adams MA, Bogduk N, Burton K, Dolan P (2013) The Biomechanics of Back Pain, 3rd edn. Churchill Livingstone, Edinburgh

    Google Scholar 

  2. Adams MA, Green TP (1993) Tensile properties of the annulus fibrosus. I. The contribution of fibre-matrix interactions to tensile stiffness and strength. Eur Spine J 2(4):203–208

    Article  CAS  PubMed  Google Scholar 

  3. Lewis NT, Hussain MA, Mao JJ (2008) Investigation of nano-mechanical properties of annulus fibrosus using atomic force microscopy. Micron 39(7):1008–1019. doi:10.1016/j.micron.2007.08.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Skaggs DL, Weidenbaum M, Iatridis JC, Ratcliffe A, Mow VC (1994) Regional variation in tensile properties and biochemical composition of the human lumbar anulus fibrosus. Spine (Phila Pa 1976) 19(12):1310–1319

    Article  CAS  Google Scholar 

  5. Umehara S, Tadano S, Abumi K, Katagiri K, Kaneda K, Ukai T (1996) Effects of degeneration on the elastic modulus distribution in the lumbar intervertebral disc. Spine (Phila Pa 1976) 21(7):811–819

    Article  CAS  Google Scholar 

  6. Skrzypiec D, Tarala M, Pollintine P, Dolan P, Adams M (2007) When are intervertebral discs stronger than their adjacent vertebrae? Spine (Phila Pa 1976) 32(22):2455–2461

    Article  Google Scholar 

  7. Eyre DR, Muir H (1977) Quantitative analysis of types I and II collagens in human intervertebral discs at various ages. Biochim Biophys Acta 492(1):29–42

    Article  CAS  PubMed  Google Scholar 

  8. Jacobs NT, Smith LJ, Han WM, Morelli J, Yoder JH, Elliott DM (2011) Effect of orientation and targeted extracellular matrix degradation on the shear mechanical properties of the annulus fibrosus. J Mech Behav Biomed Mater 4(8):1611–1619. doi:10.1016/j.jmbbm.2011.03.016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Little JP, Pearcy MJ, Tevelen G, Evans JH, Pettet G, Adam CJ (2010) The mechanical response of the ovine lumbar anulus fibrosus to uniaxial, biaxial and shear loads. J Mech Behav Biomed Mater 3(2):146–157. doi:10.1016/j.jmbbm.2009.09.002

    Article  CAS  PubMed  Google Scholar 

  10. Fujita Y, Duncan NA, Lotz JC (1997) Radial tensile properties of the lumbar annulus fibrosus are site and degeneration dependent. J Orthop Res 15(6):814–819. doi:10.1002/jor.1100150605

    Article  CAS  PubMed  Google Scholar 

  11. Schollum ML, Robertson PA, Broom ND (2009) A microstructural investigation of intervertebral disc lamellar connectivity: detailed analysis of the translamellar bridges. J Anat 214(6):805–816. doi:10.1111/j.1469-7580.2009.01076.x

    Article  PubMed Central  PubMed  Google Scholar 

  12. DeGroot J, Verzijl N, Wenting-van Wijk MJ, Jacobs KM, Van El B, Van Roermund PM, Bank RA, Bijlsma JW, TeKoppele JM, Lafeber FP (2004) Accumulation of advanced glycation end products as a molecular mechanism for aging as a risk factor in osteoarthritis. Arthritis Rheum 50(4):1207–1215. doi:10.1002/art.20170

    Article  CAS  PubMed  Google Scholar 

  13. Kawchuk G, Kaigle Holm A, Ekström L, Hansson T, Holm S (2009) Bulging of the inner and outer annulus during in vivo axial loading of normal and degenerated discs. J Spinal Disord Tech 22(3):214–218

    Article  PubMed  Google Scholar 

  14. Antoniou J, Steffen T, Nelson F, Winterbottom N, Hollander AP, Poole RA, Aebi M, Alini M (1996) The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest 98(4):996–1003. doi:10.1172/jci118884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Haefeli M, Kalberer F, Saegesser D, Nerlich AG, Boos N, Paesold G (2006) The course of macroscopic degeneration in the human lumbar intervertebral disc. Spine (Phila Pa 1976) 31(14):1522–1531. doi:10.1097/01.brs.0000222032.52336.8e

    Article  Google Scholar 

  16. Pfirrmann C, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 26(17):1873–1878

    Article  CAS  Google Scholar 

  17. Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR (1988) Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 166(1 PT 1):193–199

    Article  CAS  PubMed  Google Scholar 

  18. Zhang YH, Zhao CQ, Jiang LS, Chen XD, Dai LY (2008) Modic changes: a systematic review of the literature. Eur Spine J 17(10):1289–1299. doi:10.1007/s00586-008-0758-y

    Article  PubMed Central  PubMed  Google Scholar 

  19. Bendix T, Sorensen JS, Henriksson GA, Bolstad JE, Narvestad EK, Jensen TS (2012) Lumbar modic changes-a comparison between findings at low- and high-field magnetic resonance imaging. Spine (Phila Pa 1976) 37(20):1756–1762. doi:10.1097/BRS.0b013e318257ffce

    Article  Google Scholar 

  20. Ebara S, Iatridis J, Setton L, Foster R, Mow V, Weidenbaum M (1996) Tensile properties of nondegenerate human lumbar anulus fibrosus. Spine (Phila Pa 1976) 21(4):452–461

    Article  CAS  Google Scholar 

  21. Elliott DM, Setton LA (2001) Anisotropic and inhomogeneous tensile behavior of the human anulus fibrosus: experimental measurement and material model predictions. J Biomech Eng 123(3):256–263

    Article  CAS  PubMed  Google Scholar 

  22. Acaroglu ER, Iatridis JC, Setton LA, Foster RJ, Mow VC, Weidenbaum M (1995) Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus. Spine (Phila Pa 1976) 20(24):2690–2701

    Article  CAS  Google Scholar 

  23. Sivan SS, Wachtel E, Tsitron E, Sakkee N, van der Ham F, Degroot J, Roberts S, Maroudas A (2008) Collagen turnover in normal and degenerate human intervertebral discs as determined by the racemization of aspartic acid. J Biol Chem 283(14):8796–8801. doi:10.1074/jbc.M709885200

    Article  CAS  PubMed  Google Scholar 

  24. Stefanakis M, Luo J, Pollintine P, Dolan P, Adams MA (2014) ISSLS Prize winner: Mechanical influences in progressive intervertebral disc degeneration. Spine (Phila Pa 1976) 39(17):1365–1372. doi:10.1097/brs.0000000000000389

    Article  Google Scholar 

  25. Dolan P, Luo J, Pollintine P, Landham PR, Stefanakis M, Adams MA (2013) Intervertebral disc decompression following endplate damage: implications for disc degeneration depend on spinal level and age. Spine (Phila Pa 1976) 38(17):1473–1481. doi:10.1097/BRS.0b013e318290f3cc

    Article  Google Scholar 

Download references

Acknowledgments

National Natural Science Foundation of China (No. 31270997 and No.81171739) grant funds were received to support this work. The authors wish to express their gratitude to Professor Michael Adams and Dr. Trish Dolan for sharing their data and providing assistance with the article.

Conflict of interest

Authors have no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengdong Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, Z., Li, S., Liu, J. et al. Correlation between biomechanical properties of the annulus fibrosus and magnetic resonance imaging (MRI) findings. Eur Spine J 24, 1909–1916 (2015). https://doi.org/10.1007/s00586-015-4061-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-015-4061-4

Keywords

Navigation