Skip to main content
Log in

Analysis of coordination between thoracic and pelvic kinematic movements during gait in adolescents with idiopathic scoliosis

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

In this research, we investigated the coordination pattern and consistency of coordination between the thorax and pelvis during gait in patients with idiopathic scoliosis.

Methods

Across the study, 69 adolescent girls (controls: 30, patients: 39) participated. All participants were asked to walk 10 m barefoot at a self-selected speed. The walking speed, stride length, and range of motion of the pelvic and thoracic angles were collected using a three-dimensional optical motion analysis system, and the thorax–pelvis coordination was quantified using a vector coding technique. The frequency of four different patterns of coordination (in-phase, anti-phase, pelvis only, and thorax only) and the consistency of coordination including direction and magnitude during the gait cycle of the two groups were investigated. Independent-sample t tests were performed to examine differences between the two groups with regard to coordination patterns and consistency.

Results

The patients with idiopathic scoliosis showed significantly higher in-phase and relatively lower anti-phase in the transverse plane compared to controls. Additionally, the pelvis only in the transverse, frontal, and sagittal planes was significantly lower in patients. The consistency of coordination in patients was significantly lower than in controls in direction and magnitude on the transverse and frontal planes.

Conclusion

From viewpoint of the thorax–pelvis coordination, patients with IS had less gait stability in the trunk than controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chen P, Wang J, Tsuang Y, Liao T, Huang P, Hang Y (1998) The postural stability control and gait pattern of idiopathic scoliosis adolescents. Clin Biomech 13(Suppl 1):S52–S58. doi:10.1016/S0268-0033(97)00075-2

    Article  Google Scholar 

  2. Kramers-de Quervain IA, Müller R, Stacoff A, Grob D, Stüssi E (2004) Gait analysis in patients with idiopathic scoliosis. Eur Spine J 13(5):449–456. doi:10.1007/s00586-003-0588-x

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nault ML, Allard P, Hinse S, Le Blanc R, Caron O, Labelle H, Sadeghi H (2002) Relations between standing stability and body posture parameters in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 27(17):1911–1917. doi:10.1097/00007632-200209010-00018

    Article  Google Scholar 

  4. Stokes IA (1994) Three-dimensional terminology of spinal deformity: a report presented to the Scoliosis Research Society by the Scoliosis Research Society Working Group on 3-D terminology of spinal deformity. Spine (Phila Pa 1976) 19(2):236–248

    Article  CAS  Google Scholar 

  5. Stokes IA (1989) Axial rotation component of thoracic scoliosis. J Orthop Res 7(5):702–708

    Article  PubMed  CAS  Google Scholar 

  6. Mahaudens P, Banse X, Mousny M, Detrembleur C (2009) Gait in adolescent idiopathic scoliosis: kinematics and electromyographic analysis. Eur Spine J 18(4):512–521. doi:10.1007/s00586-009-0899-7

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Mahaudens P, Thonnard J, Detrembleur C (2005) Influence of structural pelvic disorders during standing and walking in adolescents with idiopathic scoliosis. Spine J 5(4):427–433. doi:10.1016/j.spinee.2004.11.014

    Article  PubMed  Google Scholar 

  8. Seay JF, Van Emmerik RE, Hamill J (2011) Low back pain status affects pelvis-trunk coordination and variability during walking and running. Clin Biomech 26(6):572–578. doi:10.1016/j.clinbiomech.2010.11.012

    Article  Google Scholar 

  9. Wu WH, Lin XC, Meijer OG, Gao JT, Hu H, Prins MR, Liang BW, Zhang LQ, Van Dieën JH, Bruijn SM (2014) Effects of experimentally increased trunk stiffness on thorax and pelvis rotations during walking. Hum Mov Sci 33(1):194–202. doi:10.1016/j.humov.2013.09.002

    Article  PubMed  Google Scholar 

  10. Krasovsky T, Levin MF (2010) Review: toward a better understanding of coordination in healthy and poststroke gait. Neurorehabil Neural Repair 24(3):213–224. doi:10.1177/1545968309348509

    Article  PubMed  Google Scholar 

  11. Whittle MW, Levine D (1999) Three-dimensional relationships between the movements of the pelvis and lumbar spine during normal gait. Hum Mov Sci 18(5):681–692. doi:10.1016/S0167-9457(99)00032-9

    Article  Google Scholar 

  12. Lamoth C, Beek P, Meijer O (2002) Pelvis–thorax coordination in the transverse plane during gait. Gait Posture 16(2):101–114. doi:10.1016/S0966-6362(01)00146-1

    Article  PubMed  CAS  Google Scholar 

  13. Bruijn SM, Meijer OG, Van Dieen JH, Kingma I, Lamoth CJ (2008) Coordination of leg swing, thorax rotations, and pelvis rotations during gait: the organisation of total body angular momentum. Gait Posture 27(3):455–462. doi:10.1016/j.gaitpost.2007.05.017

    Article  PubMed  Google Scholar 

  14. Roemmich RT, Field AM, Elrod JM, Stegemöller EL, Okun MS, Hass CJ (2013) Interlimb coordination is impaired during walking in persons with Parkinson’s disease. Clin Biomech 28(1):93–97. doi:10.1016/j.clinbiomech.2012.09.005

    Article  Google Scholar 

  15. Field-Fote EC, Tepavac D (2002) Improved intralimb coordination in people with incomplete spinal cord injury following training with body weight support and electrical stimulation. Phys Ther 82(7):707–715

    PubMed  Google Scholar 

  16. Tepavac D, Field-Fote EC (2001) Vector coding: a technique for quantification of intersegmental coupling in multicyclic behaviors. J Appl Biomech 17(3):259–270

    Google Scholar 

  17. Chang R, Van Emmerik R, Hamill J (2008) Quantifying rearfoot–forefoot coordination in human walking. J Biomech 41(14):3101–3105. doi:10.1016/j.jbiomech.2008.07.024

    Article  PubMed  Google Scholar 

  18. Needham R, Naemi R, Chockalingam N (2014) Quantifying lumbar–pelvis coordination during gait using a modified vector coding technique. J Biomech 47(5):1020–1026. doi:10.1016/j.jbiomech.2013.12.032

    Article  PubMed  Google Scholar 

  19. Mangone M, Scettri P, Paoloni M, Procaccianti R, Spadaro A, Santilli V (2011) Pelvis–shoulder coordination during level walking in patients with ankylosing spondylitis. Gait Posture 34(1):1–5. doi:10.1016/j.gaitpost.2011.02.002

    Article  PubMed  Google Scholar 

  20. Selles RW, Wagenaar RC, Smit TH, Wuisman PI (2001) Disorders in trunk rotation during walking in patients with low back pain: a dynamical systems approach. Clin Biomech 16(3):175–181. doi:10.1016/S0268-0033(00)00080-2

    Article  CAS  Google Scholar 

  21. Seay JF, Van Emmerik RE, Hamill J (2011) Influence of low back pain status on pelvis-trunk coordination during walking and running. Spine (Phila Pa 1976) 36(16):E1070–E1079. doi:10.1097/BRS.0b013e3182015f7c

    Article  Google Scholar 

  22. Yang JH, Suh S, Sung PS, Park W (2013) Asymmetrical gait in adolescents with idiopathic scoliosis. Eur Spine J 22(11):2407–2413. doi:10.1007/s00586-013-2845-y

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mallau S, Bollini G, Jouve JL, Assaiante C (2007) Locomotor skills and balance strategies in adolescents idiopathic scoliosis. Spine (Phila Pa 1976) 32(1):E14–E22. doi:10.1097/01.brs.0000251069.58498.eb

    Article  Google Scholar 

  24. Lao ML, Chow DH, Guo X, Cheng JC, Holmes AD (2008) Impaired dynamic balance control in adolescents with idiopathic scoliosis and abnormal somatosensory evoked potentials. J Pediatr Orthop 28(8):846–849. doi:10.1097/BPO.0b013e31818e1bc9

    Article  PubMed  Google Scholar 

  25. Kadaba MP, Ramakrishnan H, Wootten M (1990) Measurement of lower extremity kinematics during level walking. J Orthop Res 8(3):383–392. doi:10.1002/jor.1100080310

    Article  PubMed  CAS  Google Scholar 

  26. Beak S, Choi A, Choi S, Oh SE, Mun JH, Yang H, Sim T, Song H (2013) Upper torso and pelvis linear velocity during the downswing of elite golfers. Biomed Eng Online 12:13. doi:10.1186/1475-925X-12-13

    Article  PubMed  PubMed Central  Google Scholar 

  27. Winter DA (2009) Biomechanics and motor control of human movement. Wiley, New York

    Book  Google Scholar 

  28. Kubo M, Ulrich B (2006) Coordination of pelvis-HAT (head, arms and trunk) in anterior–posterior and medio-lateral directions during treadmill gait in preadolescents with/without Down syndrome. Gait Posture 23(4):512–518. doi:10.1016/j.gaitpost.2005.06.007

    Article  PubMed  Google Scholar 

  29. Hamill J, McDermott WJ, Haddad JM (2000) Issues in quantifying variability from a dynamical systems perspective. J Appl Biomech 16(4):407–418

    Google Scholar 

  30. Schwartz MH, Rozumalski A, Trost JP (2008) The effect of walking speed on the gait of typically developing children. J Biomech 41(8):1639–1650. doi:10.1016/j.jbiomech.2008.03.015

    Article  PubMed  Google Scholar 

  31. Lay AN, Hass CJ, Gregor RJ (2006) The effects of sloped surfaces on locomotion: a kinematic and kinetic analysis. J Biomech 39(9):1621–1628. doi:10.1016/j.jbiomech.2005.05.005

    Article  PubMed  Google Scholar 

  32. Perry J, Burnfield JM (2010) Gait analysis: normal and pathological function, 2nd edn. Slack Incorporated, New Jersey

    Google Scholar 

  33. Syczewska M, Lukaszewska A, Górak B, Graff K (2006) Changes in gait pattern in patients with scoliosis. Med Rehabil 10(4):12–21

    Google Scholar 

  34. Murray MP, Kory RC, Clarkson BH (1969) Walking patterns in healthy old men. J Gerontol 24(2):169–178

    Article  PubMed  CAS  Google Scholar 

  35. Huang Y, Meijer OG, Lin J, Bruijn SM, Wu W, Lin X, Hu H, Huang C, Shi L, van Dieën JH (2010) The effects of stride length and stride frequency on trunk coordination in human walking. Gait Posture 31(4):444–449. doi:10.1016/j.gaitpost.2010.01.019

    Article  PubMed  Google Scholar 

  36. van Emmerik REA, Wagenaar R (1996) Effects of walking velocity on relative phase dynamics in the trunk in human walking. J Biomech 29(9):1175–1184. doi:10.1016/0021-9290(95)00128-X

    Article  PubMed  Google Scholar 

  37. Catanzariti JF, Salomez E, Bruandet JM, Thevenon A (2001) Visual deficiency and scoliosis. Spine (Phila Pa 1976) 26(1):48–52. doi:10.1097/00007632-200101010-00010

    Article  CAS  Google Scholar 

  38. Simoneau M, Richer N, Mercier P, Allard P, Teasdale N (2006) Sensory deprivation and balance control in idiopathic scoliosis adolescent. Exp Brain Res 170(4):576–582. doi:10.1007/s00221-005-0246-0

    Article  PubMed  Google Scholar 

  39. Gauchard GC, Lascombes P, Kuhnast M, Perrin PP (2001) Influence of different types of progressive idiopathic scoliosis on static and dynamic postural control. Spine (Phila Pa 1976) 26(9):1052–1058. doi:10.1097/00007632-200105010-00014

    Article  CAS  Google Scholar 

  40. Gracovetsky S (1985) An hypothesis for the role of the spine in human locomotion: a challenge to current thinking. J Biomed Eng 7(3):205–216. doi:10.1016/0141-5425(85)90021-4

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. NRF-2013R1A1A2009495).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joung Hwan Mun.

Additional information

H.-J. Park, T. Sim and S.-W. Suh contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, HJ., Sim, T., Suh, SW. et al. Analysis of coordination between thoracic and pelvic kinematic movements during gait in adolescents with idiopathic scoliosis. Eur Spine J 25, 385–393 (2016). https://doi.org/10.1007/s00586-015-3931-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-015-3931-0

Keywords

Navigation