Skip to main content
Log in

Expression and regulation of toll-like receptors (TLRs) in human intervertebral disc cells

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Although inflammatory processes play an essential role in painful intervertebral disc (IVD) degeneration, the underlying regulatory mechanisms are not well understood. This study was designed to investigate the expression, regulation and importance of specific toll-like receptors (TLRs)—which have been shown to play an essential role e.g. in osteoarthritis—during degenerative disc disease.

Methods

The expression of TLRs in human IVDs was measured in isolated cells as well as in normal or degenerated IVD tissue. The role of IL-1β or TNF-α in regulating TLRs (expression/activation) as well as in regulating activity of down-stream pathways (NF-κB) and expression of inflammation-related genes (IL-6, IL-8, HSP60, HSP70, HMGB1) was analyzed.

Results

Expression of TLR1/2/3/4/5/6/9/10 was detected in isolated human IVD cells, with TLR1/2/4/6 being dependent on the degree of IVD degeneration. Stimulation with IL-1β or TNF-α moderately increased TLR1/TLR4 mRNA expression (TNF-α only), and strongly increased TLR2 mRNA expression (IL-1β/TNF-α), with the latter being confirmed on the protein level. Stimulation with IL-1β, TNF-α or Pam3CSK4 (a TLR2-ligand) stimulated IL-6 and IL-8, which was inhibited by a TLR2 neutralizing antibody for Pam3CSK4; IL-1β and TNF-α caused NF-κB activation. HSP60, HSP70 and HMGB1 did not increase IL-6 or IL-8 and were not regulated by IL-1β/TNF-α.

Conclusion

We provide evidence that several TLRs are expressed in human IVD cells, with TLR2 possibly playing the most crucial role. As TLRs mediate catabolic and inflammatory processes, increased levels of TLRs may lead to aggravated disc degeneration, chronic inflammation and pain development. Especially with the identification of more endogenous TLR ligands, targeting these receptors may hold therapeutic promise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Urban JP, Roberts S (2003) Degeneration of the intervertebral disc. Arthritis Res Ther 5:120–130

    Article  PubMed Central  PubMed  Google Scholar 

  2. Fraser RD, Osti OL, Vernon-Roberts B (1993) Intervertebral disc degeneration. Eur Spine J 1:205–213

    Article  CAS  PubMed  Google Scholar 

  3. Bachmeier BE, Nerlich AG, Weiler C, Paesold G, Jochum M, Boos N (2007) Analysis of tissue distribution of TNF-alpha, TNF-alpha-receptors, and the activating TNF-alpha-converting enzyme suggests activation of the TNF-alpha system in the aging intervertebral disc. Ann N Y Acad Sci 1096:44–54

    Article  CAS  PubMed  Google Scholar 

  4. Le Maitre CL, Freemont AJ, Hoyland JA (2005) The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res Ther 7:R732–R745

    Article  PubMed Central  PubMed  Google Scholar 

  5. Burke JG, Watson RW, McCormack D, Dowling FE, Walsh MG, Fitzpatrick JM (2002) Intervertebral discs which cause low back pain secrete high levels of proinflammatory mediators. J Bone Joint Surg Br 84:196–201

    Article  CAS  PubMed  Google Scholar 

  6. Le Maitre CL, Pockert A, Buttle DJ, Freemont AJ, Hoyland JA (2007) Matrix synthesis and degradation in human intervertebral disc degeneration. Biochem Soc Trans 35:652–655

    Article  PubMed  Google Scholar 

  7. Wuertz K, Vo N, Kletsas D, Boos N (2012) Inflammatory and catabolic signalling in intervertebral discs: the roles of NF-kappaB and MAP kinases. Eur Cells Mater 23:103–119 (discussion 119–120)

    CAS  Google Scholar 

  8. Seibl R, Birchler T, Loeliger S, Hossle JP, Gay RE, Saurenmann T, Michel BA, Seger RA, Gay S, Lauener RP (2003) Expression and regulation of toll-like receptor 2 in rheumatoid arthritis synovium. Am J Pathol 162:1221–1227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kyburz D, Rethage J, Seibl R, Lauener R, Gay RE, Carson DA, Gay S (2003) Bacterial peptidoglycans but not CpG oligodeoxynucleotides activate synovial fibroblasts by toll-like receptor signaling. Arthritis Rheum 48:642–650

    Article  CAS  PubMed  Google Scholar 

  10. Liu-Bryan R, Pritzker K, Firestein GS, Terkeltaub R (2005) TLR2 signaling in chondrocytes drives calcium pyrophosphate dihydrate and monosodium urate crystal-induced nitric oxide generation. J Immunol 174:5016–5023

    Article  CAS  PubMed  Google Scholar 

  11. Su SL, Tsai CD, Lee CH, Salter DM, Lee HS (2005) Expression and regulation of toll-like receptor 2 by IL-1beta and fibronectin fragments in human articular chondrocytes. Osteoarthritis Cartilage 13:879–886

    Article  PubMed  Google Scholar 

  12. Seibl R, Kyburz D, Lauener RP, Gay S (2004) Pattern recognition receptors and their involvement in the pathogenesis of arthritis. Curr Opin Rheumatol 16:411–418

    Article  PubMed  Google Scholar 

  13. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Ann Rev Immunol 21:335–376. doi:10.1146/annurev.immunol.21.120601.141126

    Article  CAS  Google Scholar 

  14. Werts C, Tapping RI, Mathison JC, Chuang TH, Kravchenko V, Saint Girons I, Haake DA, Godowski PJ, Hayashi F, Ozinsky A, Underhill DM, Kirschning CJ, Wagner H, Aderem A, Tobias PS, Ulevitch RJ (2001) Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat Immunol 2:346–352

    Article  CAS  PubMed  Google Scholar 

  15. Iwaki D, Mitsuzawa H, Murakami S, Sano H, Konishi M, Akino T, Kuroki Y (2002) The extracellular toll-like receptor 2 domain directly binds peptidoglycan derived from Staphylococcus aureus. J Biol Chem 277:24315–24320

    Article  CAS  PubMed  Google Scholar 

  16. Quero L, Klawitter M, Schmaus A, Rothley M, Sleeman J, Tiaden AN, Klasen J, Boos N, Hottiger MO, Wuertz K, Richards PJ (2013) Hyaluronic acid fragments enhance the inflammatory and catabolic response in human intervertebral disc cells through modulation of toll-like receptor 2 signalling pathways. Arthritis Res Ther 15:R94

    Article  PubMed Central  PubMed  Google Scholar 

  17. Dybdahl B, Wahba A, Lien E, Flo TH, Waage A, Qureshi N, Sellevold OF, Espevik T, Sundan A (2002) Inflammatory response after open heart surgery: release of heat-shock protein 70 and signaling through toll-like receptor-4. Circulation 105:685–690

    Article  CAS  PubMed  Google Scholar 

  18. Hwang D (2001) Modulation of the expression of cyclooxygenase-2 by fatty acids mediated through toll-like receptor 4-derived signaling pathways. FASEB J 15:2556–2564

    Article  CAS  PubMed  Google Scholar 

  19. Ohashi K, Burkart V, Flohe S, Kolb H (2000) Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 164:558–561

    Article  CAS  PubMed  Google Scholar 

  20. Yu M, Wang H, Ding A, Golenbock DT, Latz E, Czura CJ, Fenton MJ, Tracey KJ, Yang H (2006) HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock 26:174–179

    Article  CAS  PubMed  Google Scholar 

  21. Kim SC, Stice JP, Chen L, Jung JS, Gupta S, Wang Y, Baumgarten G, Trial J, Knowlton AA (2009) Extracellular heat shock protein 60, cardiac myocytes, and apoptosis. Circ Res 105:1186–1195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Ozato K, Tsujimura H, Tamura T (2002) Toll-like receptor signaling and regulation of cytokine gene expression in the immune system. Biotechniques 33:S66–S68

    Google Scholar 

  23. Fieber C, Baumann P, Vallon R, Termeer C, Simon JC, Hofmann M, Angel P, Herrlich P, Sleeman JP (2004) Hyaluronan-oligosaccharide-induced transcription of metalloproteases. J Cell Sci 117:359–367

    Article  CAS  PubMed  Google Scholar 

  24. Vazquez de Lara LG, Umstead TM, Davis SE, Phelps DS (2003) Surfactant protein A increases matrix metalloproteinase-9 production by THP-1 cells. Am J Physiol Lung Cell Mol Physiol 285:L899–L906

    Article  CAS  PubMed  Google Scholar 

  25. Takeuchi O, Hoshino K, Akira S (2000) Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J Immunol 165:5392–5396

    Article  CAS  PubMed  Google Scholar 

  26. Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F (1999) Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 274:10689–10692

    Article  CAS  PubMed  Google Scholar 

  27. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 26:1873–1878

    Article  CAS  PubMed  Google Scholar 

  28. Tiaden AN, Klawitter M, Lux V, Mirsaidi A, Bahrenberg G, Glanz S, Quero L, Liebscher T, Wuertz K, Ehrmann M, Richards PJ (2012) Detrimental role for human high temperature requirement serine protease A1 (HTRA1) in the pathogenesis of intervertebral disc (IVD) degeneration. J Biol Chem 287:21335–21345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Ospelt C, Brentano F, Rengel Y, Stanczyk J, Kolling C, Tak PP, Gay RE, Gay S, Kyburz D (2008) Overexpression of toll-like receptors 3 and 4 in synovial tissue from patients with early rheumatoid arthritis: toll-like receptor expression in early and longstanding arthritis. Arthritis Rheum 58:3684–3692

    Article  CAS  PubMed  Google Scholar 

  30. Wuertz K, Godburn K, MacLean JJ, Barbir A, Donnelly JS, Roughley PJ, Alini M, Iatridis JC (2009) In vivo remodeling of intervertebral discs in response to short- and long-term dynamic compression. J Orthop Res 27:1235–1242

    Article  PubMed Central  PubMed  Google Scholar 

  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  32. Wuertz K, Quero L, Sekiguchi M, Klawitter M, Nerlich A, Konno S, Kikuchi S, Boos N (2011) The red wine polyphenol resveratrol shows promising potential for the treatment of nucleus pulposus-mediated pain in vitro and in vivo. Spine 36:E1373–E1384

    Article  PubMed  Google Scholar 

  33. Huang QQ, Pope RM (2009) The role of toll-like receptors in rheumatoid arthritis. Curr Rheumatol Rep 11:357–364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Klawitter M, Quero L, Klasen J, Liebscher T, Nerlich A, Boos N, Wuertz K (2012) Triptolide exhibits anti-inflammatory, anti-catabolic as well as anabolic effects and suppresses TLR expression and MAPK activity in IL-1beta treated human intervertebral disc cells. Eur Spine J 21(Suppl 6):S850–S859

    Article  PubMed  Google Scholar 

  35. Klawitter M, Quero L, Klasen J, Gloess A, Klopprogge B, Hausmann O, Boos N, Wuertz K (2012) Curcuma DMSO extracts and curcumin exhibit an anti-inflammatory and anti-catabolic effect on human intervertebral disc cells, possibly by influencing TLR2 expression and JNK activity. J Inflamm (Lond) 9:29

    Article  CAS  Google Scholar 

  36. Rajan NE, Bloom O, Maidhof R, Stetson N, Sherry B, Levine M, Chahine NO (2013) Toll-like receptor 4 (TLR4) expression and stimulation in a model of intervertebral disc inflammation and degeneration. Spine 38:1343–1351

    Article  PubMed  Google Scholar 

  37. Ellman MB, Kim JS, An HS, Chen D, Kc R, An J, Dittakavi T, van Wijnen AJ, Cs-Szabo G, Li X, Xiao G, An S, Kim SG, Im HJ (2012) Toll-like receptor adaptor signaling molecule MyD88 on intervertebral disk homeostasis: in vitro, ex vivo studies. Gene 505:283–290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Gawri R, Rosenzweig DH, Krock E, Ouellet JA, Stone LS, Quinn TM, Haglund L (2014) High mechanical strain of primary intervertebral disc cells promotes secretion of inflammatory factors associated with disc degeneration and pain. Arthritis Res Ther 16:R21

    Article  PubMed Central  PubMed  Google Scholar 

  39. Nerlich AG, Bachmeier BE, Schleicher E, Rohrbach H, Paesold G, Boos N (2007) Immunomorphological analysis of RAGE receptor expression and NF-kappaB activation in tissue samples from normal and degenerated intervertebral discs of various ages. Ann N Y Acad Sci 1096:239–248

    Article  CAS  PubMed  Google Scholar 

  40. de Mos M, Joosten LA, Oppers-Walgreen B, van Schie JT, Jahr H, van Osch GJ, Verhaar JA (2009) Tendon degeneration is not mediated by regulation of Toll-like receptors 2 and 4 in human tenocytes. J Orthop Res 27:1043–1047

    Article  PubMed  Google Scholar 

  41. Kim HA, Cho ML, Choi HY, Yoon CS, Jhun JY, Oh HJ, Kim HY (2006) The catabolic pathway mediated by Toll-like receptors in human osteoarthritic chondrocytes. Arthritis Rheum 54:2152–2163

    Article  CAS  PubMed  Google Scholar 

  42. Raicevic G, Rouas R, Najar M, Stordeur P, Boufker HI, Bron D, Martiat P, Goldman M, Nevessignsky MT, Lagneaux L (2010) Inflammation modifies the pattern and the function of toll-like receptors expressed by human mesenchymal stromal cells. Hum Immunol 71:235–244

    Article  CAS  PubMed  Google Scholar 

  43. Sakai A, Han J, Cato AC, Akira S, Li JD (2004) Glucocorticoids synergize with IL-1beta to induce TLR2 expression via MAP Kinase Phosphatase-1-dependent dual Inhibition of MAPK JNK and p38 in epithelial cells. BMC Mol Biol 5:2

    Article  PubMed Central  PubMed  Google Scholar 

  44. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Ann Rev Immunol 20:197–216

    Article  CAS  Google Scholar 

  45. Erridge C (2010) Endogenous ligands of TLR2 and TLR4: agonists or assistants? J Leukoc Biol 87:989–999

    Article  CAS  PubMed  Google Scholar 

  46. Van Eden W, Wick G, Albani S, Cohen I (2007) Stress, heat shock proteins, and autoimmunity: how immune responses to heat shock proteins are to be used for the control of chronic inflammatory diseases. Ann N Y Acad Sci 1113:217–237

    Article  PubMed  Google Scholar 

  47. Harris HE, Andersson U, Pisetsky DS (2012) HMGB1: a multifunctional alarmin driving autoimmune and inflammatory disease. Nat Rev Rheumatol 8:195–202

    Article  CAS  PubMed  Google Scholar 

  48. Sofat N (2009) Analysing the role of endogenous matrix molecules in the development of osteoarthritis. Int J Exp Pathol 90:463–479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Flannery CR, Little CB, Hughes CE, Caterson B (1998) Expression and activity of articular cartilage hyaluronidases. Biochem Biophys Res Commun 251:824–829

    Article  CAS  PubMed  Google Scholar 

  50. Campo GM, Avenoso A, D’Ascola A, Prestipino V, Scuruchi M, Nastasi G, Calatroni A, Campo S (2012) Hyaluronan differently modulates TLR-4 and the inflammatory response in mouse chondrocytes. BioFactors 38:69–76

    Article  CAS  PubMed  Google Scholar 

  51. Radstake TR, Roelofs MF, Jenniskens YM, Oppers-Walgreen B, van Riel PL, Barrera P, Joosten LA, van den Berg WB (2004) Expression of toll-like receptors 2 and 4 in rheumatoid synovial tissue and regulation by proinflammatory cytokines interleukin-12 and interleukin-18 via interferon-gamma. Arthritis Rheum 50:3856–3865

    Article  CAS  PubMed  Google Scholar 

  52. Brentano F, Schorr O, Gay RE, Gay S, Kyburz D (2005) RNA released from necrotic synovial fluid cells activates rheumatoid arthritis synovial fibroblasts via toll-like receptor 3. Arthritis Rheum 52:2656–2665

    Article  CAS  PubMed  Google Scholar 

  53. Podichetty VK (2007) The aging spine: the role of inflammatory mediators in intervertebral disc degeneration. Cell Mol Biol (Noisy-le-grand) 53:4–18

    CAS  Google Scholar 

  54. Esser PR, Wolfle U, Durr C, von Loewenich FD, Schempp CM, Freudenberg MA, Jakob T, Martin SF (2012) Contact sensitizers induce skin inflammation via ROS production and hyaluronic acid degradation. PLoS ONE 7:e41340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was made possible by grants from AOSpine (SRN 02/103) as well as by the Mäxi Foundation (CABMM). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of AOSpine or of the Mäxi Foundation. We thank Dr. Wojtal from the University Hospital Zurich for providing THP1 cells.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Wuertz.

Additional information

M. Klawitter, M. Hakozaki, and H. Kobayashi have equally contributed to the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

586_2014_3442_MOESM1_ESM.jpg

Supplementary Figure S1: Cytotoxicity and bioactivity of Pam3CSK4. (a) Cytotoxicity after treatment with different concentrations of Pam3CSK4 for 18 h, measured by MTT. Mean ± SEM one donor. (b/c) Fold changes in gene expression of IL-6 (b) and IL-8 (c) after stimulation with different concentrations of Pam3CSK4 for 18 h, measured by Real-time RT-PCR and calculated by the 2−∆∆Ct method. Changes are calculated relative to untreated control cells. Mean ± SEM of one donor. (JPEG 190 kb)

586_2014_3442_MOESM2_ESM.jpg

Supplementary Figure S2: Correlation of TLR mRNA expression with the degree of IVD degeneration. Gene expression of TLR3 (a) and TLR10 (b) in IVD biopsies with different degrees of degeneration (1 = healthy; 2 = mild degeneration; 3 = moderate degeneration; 4 = severe degeneration), measured by Real-time RT-PCR and calculated by the 2−∆Ct method. Individual data points of five independent donors in each group. Asterisks indicate statistical significance between indicated groups (i.e. grades of degeneration) with p < 0.05. (JPEG 62 kb)

586_2014_3442_MOESM3_ESM.jpg

Supplementary Figure 3: Changes in TLR3 mRNA expression upon stimulation with TNF-α or IL-1β (time course & concentration dependency). Fold changes in gene expression of TLR3 after stimulation with 10 ng/ml TNF-α as time course (a) and concentration dependency (b) or 5 ng/ml IL-1β as time course (c) and concentration dependency (d) measured by Real-time RT-PCR and calculated by the 2−∆∆Ct method. Changes are calculated relative to untreated control cells. Mean ± SEM of five independent donors. Asterisks indicate statistical significance relative to untreated control with p < 0.05. (JPEG 111 kb)

586_2014_3442_MOESM4_ESM.jpg

Supplementary Figure 4: Changes in HSP60, HSP70 and HMGB1 mRNA expression upon stimulation with TNF-α or IL-1β. Fold changes in gene expression of HSP60 (a), HSP70 (b) and HMGB1 (c) after stimulation with 5 ng/ml IL-1β or 10 ng/ml TNF-α for 18 h, measured by Real-time RT-PCR and calculated by the 2−∆∆Ct method. Changes are calculated relative to untreated control cells. Mean ± SEM of five independent donors. Asterisks indicate statistical significance relative to untreated control with p < 0.05. (JPEG 95 kb)

586_2014_3442_MOESM5_ESM.jpg

Supplementary Figure 5: Changes in IL-6 and IL-8 mRNA expression upon stimulation with HSP60, HSP70 and HMGB1. Fold changes in gene expression of IL-6 (a-c) and IL-8 (d-f) after stimulation with HSP60 (a, d), HSP70 (b, e) or HMGB1 (c, f) for 18 h, measured by Real-time RT-PCR and calculated by the 2−∆∆Ct method. Changes are calculated relative to untreated control cells. Mean ± SEM of five independent donors. Asterisks indicate statistical significance relative to untreated control with p < 0.05. (JPEG 134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klawitter, M., Hakozaki, M., Kobayashi, H. et al. Expression and regulation of toll-like receptors (TLRs) in human intervertebral disc cells. Eur Spine J 23, 1878–1891 (2014). https://doi.org/10.1007/s00586-014-3442-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-014-3442-4

Keywords

Navigation