Skip to main content

Advertisement

Log in

Evaluation of impingement behaviour in lumbar spinal disc arthroplasty

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Introduction

The objective of our in vitro study was to introduce a test method to evaluate impingement in lumbar spinal disc arthroplasty in terms of wear, contact pattern, metal ion concentration and particle release.

Material and Method

Impingement wear simulation was performed on a 6-station spinal wear simulator (Endolab, Germany) on a lumbar spinal disc system (activ® L Aesculap AG, Germany) using four different protocols specific to impingement in flexion, in extension, in lateral bending and in combined flexion bending. Impingement contact stress is intentionally created by applying an angular displacement of +2° in addition to the intended range of motion in the impingement direction, whereas a bending moment of 8 Nm remains constant during the impingement phase (plateau).

Results

An average volumetric wear rate of 0.67 mm3/million cycles was measured by impingement under flexion, of 0.21 mm3/million cycles under extension, of 0.06 mm3/million cycles under lateral bending and of 1.44 mm3/million cycles under combined flexion bending. The particle size distribution of the cobalt-chromium wear particles released by impingement in flexion (anterior), extension (posterior), lateral bending (lateral) and combined flexion bending (antero-lateral) revealed that most of the detected cobalt-chromium particles were in a size range between 0.2 and 2 µm.

Conclusion

The impingement wear simulation introduced here proved to be suitable to predict in vivo impingement behaviour in regard to contact pattern seen on retrieved devices of the activ® L lumbar disc arthroplasty design in a pre-clinical test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Affatato S, Fernandes B, Tucci A, Esposito L, Toni A (2001) Isolation and morphological characterisation of UHMWPE wear debris generated in vitro. Biomaterials 22:2325–2331

    Article  CAS  PubMed  Google Scholar 

  2. Amstutz HC, Campbell PA, Dorey FJ, Johnson AJ, Skipor AK, Jacobs JJ (2013) Do ion concentrations after metal-on-metal hip resurfacing increase over time? A prospective study. J Arthroplasty 28(4):695–700

    Article  PubMed  Google Scholar 

  3. Austen S, Punt IM, Cleutjens JPM, Willems PC, Kurtz SM, MacDonald DW, van Rhijn LW, van Ooij A (2012) Clinical, radiological, histological and retrieval findings of Activ-L and Mobidisc total disc replacements—a study of two patients. Eur Spine J 21(4):S51–S520

  4. Baxter RM, MacDonald DW, Kurtz SM, Steinbeck MJ (2013) Severe impingement of lumbar disc replacements increases the functional biological activity of polyethylene wear debris. J Bone Joint Surg 95A(e75):1–9

    Google Scholar 

  5. Blumenthal S, McAfee PC, Guyer RD, Hochschuler SH, Geisler FH, Holt RT, Garcia R, Regan JJ, Ohnmeiss DD (2005) A prospective, randomized, multicenter food and drug administration investigational device exemptions study of lumbar total disc replacement with the Charité artificial disc versus lumbar fusion. Spine 30(14):1565–1575

    Article  PubMed  Google Scholar 

  6. Catelas I, Wimmer MA, Utzschneider S (2011) Polyethylene and metal wear particles: characteristics and biological effects. Semin Immunopathol 33(3):257–271

    Article  CAS  PubMed  Google Scholar 

  7. Cavanaugh DA, Nunley PD, Kerr EJ III, Werner DJ, Jawahar A (2009) Delayed hyper-reactivity to metal ions after cervical disc arthroplasty—a case report and literature review. Spine 34(7):E262–E265

    Article  PubMed  Google Scholar 

  8. Cunningham BW, Gordon JD, Dmitriev AE, Hu N, McAfee PC (2003) Biomechanical evaluation of total disc replacement arthroplasty: an in vitro human cadaveric model. Spine 28(20S):110–117

    Article  Google Scholar 

  9. Cunningham BW, Hu N, Hallab NJ, McAfee PC (2007) Epidural application of particular wear debris—a comprehensive analysis of ten different implant materials using an in vivo animal model. 7th Annual Meeting of the Spine Arthroplasty Society May 1–4, 2007 Berlin Abstract PA-WE10

  10. David T (2007) Long-term results of one-level lumbar arthroplasty. Minimum 10-year follow-up of the Charité artificial disc in 106 patients. Spine 32(6):661–666

    Article  PubMed  Google Scholar 

  11. de Souza RM, Parsons NR, Oni T, Dalton P, Costa M, Krikler S (2010) Metal ion levels following resurfacing arthroplasty of the hip—serial results over a ten-year period. J Bone Joint Surg 92B:1642–1647

    Google Scholar 

  12. Devin CJ, Myers TG, Kang JD (2008) Chronic failure of a lumbar total disc replacement with osteolysis. Report of a case with nineteen-year follow-up. J Bone Joint Surg 90A:2230–2234

  13. Golish SR, Anderson PA (2012) Bearing surfaces for total disc arthroplasty: metal-on-metal versus metal-on-polyethylene and other biomaterials. Spine J 12(8):693–701

    Article  PubMed  Google Scholar 

  14. Gornet MF, Burkus JK, Harper ML, Chan FW, Skipor AK, Jacobs JJ (2012) Prospective study on serum metal levels in patients with metal-on-metal lumbar disc arthroplasty. Eur Spine J 22(4):741–746

    Article  PubMed Central  PubMed  Google Scholar 

  15. Grupp TM, Yue JJ, Garcia R, Basson J, Schwiesau J, Fritz B, Blömer W (2009) Biotribological evaluation of artificial disc arthroplasty devices: influence on loading and kinematic patterns during in vitro wear simulation. Eur Spine J 18(1):98–108

    Article  PubMed Central  PubMed  Google Scholar 

  16. Guyer RD, Shellock J, MacLennan B, Hanscom D, Knight RQ, McCombe P, Jacobs JJ, Urban RM, Bradford D, Ohnmeiss DD (2011) Early failure of metal-on-metal artificial disc prostheses associated with lymphocytic reaction—diagnosis and treatment experience in four cases. Spine 36(4):E492–E497

    Article  PubMed  Google Scholar 

  17. Hallab NJ, Chan FW, Harper ML (2012) Quantifying subtle but persistent peri-spine inflammation in vivo to submicron cobalt-chromium alloy particles. Eur Spine J 21:2649–2658

    Article  PubMed Central  PubMed  Google Scholar 

  18. Hallab NJ, Cunningham BW, Jacobs JJ (2003) Spinal implant debris-induced osteolysis. Spine 28(20S):125–138

    Article  Google Scholar 

  19. Hannemann F, Hartmann A, Schmitt J, Lützner J, Seidler A, Campbell P, Delaunay CP, Drexler H, Ettema HB, García-Cimbrelo E, Huberti H, Knahr K, Kunze J, Langton DJ, Lauer W, Learmonth I, Lohmann CH, Morlock M, Wimmer MA, Zagra L, Günther KP (2013) European multidisciplinary consensus statement on the use and monitoring of metal-on-metal bearings for total hip replacement and hip resurfacing. Orthop Trauma Surg Res. doi:10.1016/j.otsr.2013.01.005

  20. Hedman TP, Kostuik JP, Fernie GR, Heller WG (1991) Design of an intervertebral disc prosthesis. Spine 16(6):S256–S260

    Article  CAS  PubMed  Google Scholar 

  21. Kaddick C, Hintner M, Wimmer MA (2010) Standardized wear testing of intervertebral spinal disc prostheses—a summary of 9 years of testing experience. In: Cobb (ed) Modern trends in THA bearings—material and clinical performance. Springer, New York, pp 131–138

  22. Kaefer W, Clessienne CB, Daexle M, Kocak T, Reichel H, Cakir B (2008) Posterior component impingement after lumbar total disc replacement—a radiographic analysis of 66 ProDisc-L prostheses in 56 patients. Spine 33(22):2444–2449

    Article  Google Scholar 

  23. Kurtz SM, Patwardhan A, MacDonald D, Ciccarelli L, van Ooij A, Lorenz M, Zindrick M, O’Leary P, Isaza J, Ross R (2008) What is the correlation of in vivo wear and damage patterns with in vitro TDR motion response. Spine 33(5):481–489

    Article  PubMed Central  PubMed  Google Scholar 

  24. Kurtz SM, von Ooij A, Ross ER, de Waal Malefijt J, Ciccarelli L, Villarraga ML (2007) Polyethylene wear and rim fracture in total disc arthroplasty. Spine J 7(1):12–21

    Article  PubMed  Google Scholar 

  25. Langton DJ, Sprowson AP, Joyce TJ, Reed M, Carluke I, Partington P, Nargol AVF (2009) Blood metal ion concentrations after hip resurfacing arthroplasty. J Bone Joint Surg 91B:1287–1295

    Article  Google Scholar 

  26. Lebl DR, Cammisa FP Jr, Girardi FP, Wright T, Abjornson C (2012) The mechanical performance of cervical total disc replacements in vivo—prospective retrieval analysis of ProDisc-C devices. Spine 37(26):2151–2160

    Article  PubMed  Google Scholar 

  27. Lebl DR, Cammisa FP, Girardi FP, Wright T, Abjornson C (2012) In vivo functional performance of failed ProDisc-L devices. Spine 37(19):E1209–E1217

    Article  PubMed  Google Scholar 

  28. Lee JL, Billi F, Sangiorgio SN, McGarry W, Krueger DJ, Miller PT, McKellop H, Ebramzadeh E (2008) Wear of an experimental metal-on-metal artificial disc for the lumbar spine. Spine 33(6):597–606

    Article  PubMed  Google Scholar 

  29. Maezawa K, Nozawa M, Yuasa T, Aritomi K, Matsuda K, Shitoto K (2010) Seven years of chronological changes of serum chromium levels after Metasul metal-on-metal total hip arthroplasty. J Arthroplasty 25(8):695–700

    Article  Google Scholar 

  30. Marker M, Grübl A, Riedl O, Heinze G, Pohanka E, Kotz R (2008) Metal-on-metal hip implants: do they impair renal function in the long-term? A 10-year follow-up study. Arch Orthop Trauma Surg 128:915–919

    Article  PubMed  Google Scholar 

  31. Mathews HH, LeHuec JC, Friesem T, Zdeblick T, Eisermann L (2004) Design rationale and biomechanics of Maverick total disc arthroplasty with early clinical results. Spine J 4:268S–275S

    Article  PubMed  Google Scholar 

  32. Merritt K, Brown SA (1996) Distribution of cobalt chromium wear and corrosion products and biologic reactions. Clin Orth Rel Res 329S:S233–S234

    Article  Google Scholar 

  33. Niedzwiecki S, Klapperich C, Short J, Jani S, Ries M, Pruitt L (2001) Comparison of three joint simulator wear debris isolation techniques: acid digestion, base digestion, and enzymatic cleavage. J Biomed Mater Res 56:245–249

    Article  CAS  PubMed  Google Scholar 

  34. Paré PE, Chan FW, Powell ML (2007) Wear characterization of the A-MAVTM anterior motion replacement using a spine wear simulator. Wear 263:1055–1059

    Article  Google Scholar 

  35. Polyzois I, Nikolopoulos D, Michos I, Patsouris E, Theocharis S (2012) Local and systemic toxicity of nanoscale debris particles in total hip arthroplasty. J Appl Toxicol 32(4):255–269

    Article  CAS  PubMed  Google Scholar 

  36. Punt IM, Cleutjens JPM, de Bruin T, Willems PC, Kurtz SM, van Rhijn LW, Schurink GWH, van Ooij A (2009) Periprosthetic tissue reactions observed at revision of total intervertebral disc arthroplasty. Biomaterials 30:2079–2084

    Article  CAS  PubMed  Google Scholar 

  37. Punt IM, Willems P, Kurtz SM, van Rhijn LW, van Ooij A (2012) Clinical outcomes of two revision strategies for failed total disc replacements. Eur Spine J 21:2558–2564

    Article  PubMed Central  PubMed  Google Scholar 

  38. Rohlmann A, Bergmann G, Graichen F (1999) Loads on internal spinal fixators measured in different body positions—SSE Basic Science Award 1999. Eur Spine J 8:354–359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Rundell SA, Day JS, Isaza J, Guillory S, Kurtz SM (2012) Lumbar total disc replacement impingement sensitivity to disc height distraction, spinal sagittal orientation, implant position, and implant lordosis. Spine 37(10):E590–E598

    Article  PubMed  Google Scholar 

  40. Rundell SA, Day JS, Isaza J, Siskey R, MacDonald D, Kurtz SM (2011) Derivation of clinically relevant boundary conditions suitable for evaluation of chronic impingement of lumbar total disk replacement: application to standard development. J ASTM Int 8(5):1–14, JAI103556

  41. Simonsen LO, Harbak H, Bennekou P (2012) Cobalt metabolism and toxicology—a brief update. Sci Total Environ 432:210–215

    Article  CAS  PubMed  Google Scholar 

  42. Tropiano P, Huang RC, Girardi FP, Cammisa FP, Marnay T (2005) Lumbar total disc replacement—seven to eleven-year follow-up. J Bone Joint Surg 87A(3):490–496

    Google Scholar 

  43. Tumialán LM, Gluf WM (2011) Progressive vertebral body osteolysis after cervical disc arthroplasty. Spine 36(14):E973–E978

    Article  PubMed  Google Scholar 

  44. van den Eerenbeemt KD, Ostelo RW, van Royen BJ, Peul WC, van Tulder MW (2010) Total disc replacement surgery for symptomatic degenerative lumbar disc disease—a systematic review of the literature. Eur Spine J 19(8):1262–1280

    Article  PubMed Central  PubMed  Google Scholar 

  45. van Ooij A, Kurtz SM, Stessels F, Noten H, van Rhijn L (2007) Polyethylene wear debris and long-term clinical failure of the Charité disc prosthesis. Spine 32(2):223–229

    Article  PubMed  Google Scholar 

  46. Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants—recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7(2):148–154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Wooley PH, Morren R, Andary J, Sud S, Yang SY, Mayton L, Markel D, Sieving A, Nasser S (2002) Inflammatory responses to orthopaedic biomaterials in the murine air pouch. Biomaterials 23:517–526

    Article  CAS  PubMed  Google Scholar 

  48. Zeh A, Planert M, Siegert G, Lattke P, Held A, Hein W (2007) Release of cobalt and chromium ions into the serum following implantation of the metal-on-metal Maverick-type artificial lumbar disc. Spine 32(3):348–352

    Article  PubMed  Google Scholar 

  49. Zigler J, Delamarter R, Spivak JM, Linovitz RJ, Danielson III GO, Haider TT, Cammisa F, Zuchermann J, Balderston R, Kitchel S, Foley K, Watkins R, Bradford D, Yue J, Yuan H, Herkowitz H, Geiger D, Bendo J, Peppers T, Sachs B, Girardi F, Kropf M, Goldstein J (2007) Results of the prospective, randomized, multicenter FDA IDE study of the ProDisc-L total disc replacement versus circumferential fusion for the treatment of 1-level degenerative disc disease. Spine 32(11):1155–1162

  50. Zigler JE, Delamarter RB (2012) Five-year results of the prospective, randomized, multicenter, FDA IDE study of the ProDisc-L total disc replacement versus circumferential arthrodesis for the treatment of single-level degenerative disc disease. J Neurosurg Spine 17:493–501

    Article  PubMed  Google Scholar 

  51. Zigler JE, Glenn J, Delamarter RB (2012) Five-year adjacent-level degenerative changes in patients with single-level disease treated using lumbar total disc replacement with ProDisc-L versus circumferential fusion. J Neurosug Spine 17:504–511

    Article  PubMed  Google Scholar 

  52. Zysk SP, Gebhard H, Plitz W, Buchhorn GH, Sprecher CM, Jansson V, Messmer K, Veihelmann A (2004) Influence of orthopedic particulate biomaterials on inflammation and synovial microcirculation in the murine knee joint. J Biomed Mater Res Appl Biomater 71B:108–115

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Sarah Mattes and Ricardo Smits Serena for their work on part of the particle analysis.

Conflict of interest

Five of the authors (TG, BF, CS, JS, WB) are employees of Aesculap Tuttlingen a manufacturer of orthopaedic implants. Two of the authors (JY, RG) are advising surgeons in Aesculap R&D projects. One of the authors (CK) is getting research funding in correlation with Aesculap R&D projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Grupp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grupp, T.M., Yue, J.J., Garcia, R. et al. Evaluation of impingement behaviour in lumbar spinal disc arthroplasty. Eur Spine J 24, 2033–2046 (2015). https://doi.org/10.1007/s00586-014-3381-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-014-3381-0

Keywords

Navigation