Skip to main content

Advertisement

Log in

Selective estrogen receptor modulation prevents scoliotic curve progression: radiologic and histomorphometric study on a bipedal C57Bl6 mice model

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Previous work has suggested that progression of experimental scoliotic curves in pinealectomized chicken and bipedal C57BL6 mice models may be prevented and reversed with Tamoxifen treatment. Raloxifene is another Selective Estrogen Receptor Modulator (SERM) with estrogen agonist effects on bone and increases bone density but with fewer side effects on humans. To investigate whether scoliosis progression in bipedal C57Bl6 mice model could be prevented with SERM treatment and the mechanisms associated with this effect.

Methods

Eighty C57BL6 mice were rendered bipedal and divided into Tamoxifen (TMX), Raloxifene (RLX) and control groups. TMX and RLX groups received orally administered TMX and RLX for 40 weeks. Anteroposterior X-ray imaging and histomorphometric analysis (at 20th and 40th weeks) were performed.

Results

At 20th week, TMX and RLX groups displayed higher rates (p = 0.033, p = 0.029) and larger curve magnitudes (p = 0.018). At 40th week, curve rates were similar between the groups but the curve magnitudes in TMX and RLX groups were smaller (p = 0.001). Histomorphometry revealed that treated animals had higher trabecular density (p = 0.04), lower total intervertebral disc (p = 0.038) and growth plate volumes (p = 0.005) and smaller vertebral bodies (p = 0.016).

Conclusions

Treatment with TMX or RLX did not reduce the incidence of scoliosis but decreased the curve magnitudes at 40 weeks. The underlying mechanism associated with the decrease in curve magnitudes may be the early maturation of growth plates, thereby possible deceleration of the growth rate of the vertebral column and increase in bone density. RLX is as effective as TMX in preventing the progression of scoliotic curves in melatonin deficient bipedal mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahn UM, Ahn NU, Nallamshetty L et al (2002) The etiology of adolescent idiopathic scoliosis. Am J Orthop (Belle Mead NJ) 31:387–395

    Google Scholar 

  2. Inoue M, Minami S, Kitahara H et al (1998) Idiopathic scoliosis in twins studied by DNA fingerprinting: the incidence and type of scoliosis. J Bone Joint Surg Br 80:212–217

    Article  CAS  PubMed  Google Scholar 

  3. Inoue M, Minami S, Nakata Y et al (2002) Prediction of curve progression in idiopathic scoliosis from gene polymorphic analysis. Stud Health Technol Inform 91:90–96

    PubMed  Google Scholar 

  4. Lowe TG, Edgar M, Margulies JY et al (2000) Etiology of idiopathic scoliosis: current trends in research. J Bone Joint Surg Am 82-A:1157–1168

    CAS  PubMed  Google Scholar 

  5. Mei YA, Lee PP, Wei H, Zhang ZH, Pang SF (2001) Melatonin and its analogs potentiate the nifedipine-sensitive high-voltage-activated calcium current in the chick embryonic heart cells. J Pineal Res 30:13–21

    Article  CAS  PubMed  Google Scholar 

  6. Miller NH (1999) Cause and natural history of adolescent idiopathic scoliosis. Orthop Clin North Am 30:343–52, vii

    Google Scholar 

  7. Miller NH (2002) Genetics of familial idiopathic scoliosis. Clin Orthop Relat Res 462:60–64

    Article  Google Scholar 

  8. Wang WJ, Yeung HY, Chu WC et al (2011) Top theories for the etiopathogenesis of adolescent idiopathic scoliosis. J Pediatr Orthop 31:S14–S27

    Article  PubMed  Google Scholar 

  9. Dubousset J, Queneau P, Thillard MJ (1983) Experimental scoliosis induced by pineal and diencephalic lesions in young chickens. Its relation with clinical findings in idiopathic scoliosis. Orthop Trans 7:7–12

    Google Scholar 

  10. Machida M, Dubousset J, Imamura Y, Iwaya T, Yamada T, Kimura J (1995) Role of melatonin deficiency in the development of scoliosis in pinealectomised chickens. J Bone Joint Surg Br 77:134–138

    CAS  PubMed  Google Scholar 

  11. Machida M, Dubousset J, Imamura Y et al (1994) Pathogenesis of idiopathic scoliosis: SEPS in chicken with experimentally induced scoliosis and in patients with idiopathic scoliosis. J Pediatr Orthop 14:329–335

    Article  CAS  PubMed  Google Scholar 

  12. Machida M, Dubousset J, Satoh T et al (2001) Pathologic mechanism of experimental scoliosis in pinealectomized chickens. Spine (Phila Pa 1976) 26:E385–E391

    Article  CAS  Google Scholar 

  13. Turgut M, Yenisey C, Uysal A, Bozkurt M, Yurtseven ME (2003) The effects of pineal gland transplantation on the production of spinal deformity and serum melatonin level following pinealectomy in the chicken. Eur Spine J 12:487–494

    Article  PubMed Central  PubMed  Google Scholar 

  14. Turhan E, Acaroglu E, Bozkurt G, Alanay A, Yazici M, Surat A (2006) Unilateral enucleation affects the laterality but not the incidence of scoliosis in pinealectomized chicken. Spine (Phila Pa 1976) 31:133–138

    Article  Google Scholar 

  15. Bagnall K, Raso VJ, Moreau M, Mahood J, Wang X, Zhao J (1999) The effects of melatonin therapy on the development of scoliosis after pinealectomy in the chicken. J Bone Joint Surg Am 81:191–199

    CAS  PubMed  Google Scholar 

  16. Bagnall KM, Beuerlein M, Johnson P, Wilson J, Raso VJ, Moreau M (2001) Pineal transplantation after pinealectomy in young chickens has no effect on the development of scoliosis. Spine (Phila Pa 1976) 26:1022–1027

    Article  CAS  Google Scholar 

  17. Akel I, Kocak O, Bozkurt G, Alanay A, Marcucio R, Acaroglu E (2009) The effect of calmodulin antagonists on experimental scoliosis: a pinealectomized chicken model. Spine (Phila Pa 1976) 34:533–538

    Article  Google Scholar 

  18. Machida M, Dubousset J, Yamada T et al (2006) Experimental scoliosis in melatonin-deficient C57BL/6J mice without pinealectomy. J Pineal Res 41:1–7

    Article  CAS  PubMed  Google Scholar 

  19. Akel I, Demirkiran G, Alanay A, Karahan S, Marcucio R, Acaroglu E (2009) The effect of calmodulin antagonists on scoliosis: bipedal C57BL/6 mice model. Eur Spine J 18:499–505

    Article  PubMed Central  PubMed  Google Scholar 

  20. Francucci CM, Romagni P, Boscaro M (2005) Raloxifene: bone and cardiovascular effects. J Endocrinol Invest 28:85–89

    CAS  PubMed  Google Scholar 

  21. Vogel VG, Costantino JP, Wickerham DL et al (2006) Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA 295:2727–2741

    Article  CAS  PubMed  Google Scholar 

  22. Cano A, Dapia S, Noguera I et al (2008) Comparative effects of 17beta-estradiol, raloxifene and genistein on bone 3D microarchitecture and volumetric bone mineral density in the ovariectomized mice. Osteoporos Int 19:793–800

    Article  CAS  PubMed  Google Scholar 

  23. Delmas PD, Bjarnason NH, Mitlak BH et al (1997) Effects of raloxifene on bone mineral density, serum cholesterol concentrations, and uterine endometrium in postmenopausal women. N Engl J Med 337:1641–1647

    Article  CAS  PubMed  Google Scholar 

  24. Goff CW, Landmesser W (1957) Bipedal rats and mice; laboratory animals for orthopaedic research. J Bone Joint Surg Am 39-A:616–622

    CAS  PubMed  Google Scholar 

  25. Machida M, Dubousset J, Yamada T, Kimura J (2009) Serum melatonin levels in adolescent idiopathic scoliosis prediction and prevention for curve progression–a prospective study. J Pineal Res 46:344–348

    Article  CAS  PubMed  Google Scholar 

  26. Qiu XS, Tang NL, Yeung HY et al (2007) Melatonin receptor 1B (MTNR1B) gene polymorphism is associated with the occurrence of adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 32:1748–1753

    Article  Google Scholar 

  27. Moreau A, Wang DS, Forget S et al (2004) Melatonin signaling dysfunction in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 29:1772–1781

    Article  Google Scholar 

  28. Letellier K, Azeddine B, Parent S, Labelle H, Rompré PH, Moreau A, Moldovan F (2008) Estrogen cross-talk with the melatonin signaling pathway in human osteoblasts derived from adolescent idiopathic scoliosis patients. J Pineal Res 45:383–393

    Article  CAS  PubMed  Google Scholar 

  29. Cheung WY (1980) Calmodulin plays a pivotal role in cellular regulation. Science 207:19–27

    Article  CAS  PubMed  Google Scholar 

  30. Xia Z, Storm DR (1997) Calmodulin-regulated adenylyl cyclases and neuromodulation. Curr Opin Neurobiol 7:391–396

    Article  CAS  PubMed  Google Scholar 

  31. Cheng JC, Guo X, Sher AH (1999) Persistent osteopenia in adolescent idiopathic scoliosis. A longitudinal follow up study. Spine 24 (Phila Pa 1976):1218–1222

    Article  Google Scholar 

  32. Cheng JC, Qin L, Cheung CS et al (2000) Generalized low areal and volumetric bone mineral density in adolescent idiopathic scoliosis. J Bone Miner Res 15:1587–1595

    Article  CAS  PubMed  Google Scholar 

  33. Chen WJ, Qiu Y, Zhu F et al (2008) Vitamin D receptor gene polymorphisms: no association with low bone mineral density in adolescent idiopathic scoliosis girls. Zhonghua Wai Ke Za Zhi 46:1183–1186

    PubMed  Google Scholar 

  34. Inoue M, Minami S, Nakata Y et al (2002) Association between estrogen receptor gene polymorphisms and curve severity of idiopathic scoliosis. Spine (Phila Pa 1976) 27:2357–2362

    Article  Google Scholar 

  35. Dede O, Akel I, Demirkiran G, Yalcin N, Marcucio R, Acaroglu E (2011) Is decreased bone mineral density associated with development of scoliosis? A bipedal osteopenic rat model. Scoliosis 6:24

    Article  PubMed Central  PubMed  Google Scholar 

  36. Urbauer, Jeffrey L, Ramona J, Bieber-Urbauer, Carrie E. Jolly (2009) Mechanistic Basis of Calmodulin Mediated Estrogen Receptor Alpha Activation and Antiestrogen Resistance. Georgia Univ Research Foundation Inc, Athens

  37. Leboeuf D, Letellier K, Alos N, Edery P, Moldovan F (2009) Do estrogens impact adolescent idiopathic scoliosis? Trends Endocrinol Metab 20:147–152

    Article  CAS  PubMed  Google Scholar 

  38. Acaroglu E, Akel I, Alanay A, Yazici M, Marcucio R (2009) Comparison of the melatonin and calmodulin in paravertebral muscle and platelets of patients with or without adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 34:E659–E663

    Article  Google Scholar 

  39. Machida M, Murai I, Miyashita Y, Dubousset J, Yamada T, Kimura J (1999) Pathogenesis of idiopathic scoliosis. Experimental study in rats. Spine (Phila Pa 1976) 24:1985–1989

    Article  CAS  Google Scholar 

  40. Janssen MM, de Wilde RF, Kouwenhoven JW, Castelein RM (2011) Experimental animal models in scoliosis research: a review of the literature. Spine J 11:347–358

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by research grants from the “Yves Cotrel Foundation”, Paris, France.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emre Acaroglu.

Additional information

First three authors (Drs. Demirkiran, Dede and Yalcin) have equally contributed to the research project as well as the preparation of the manuscript. Their present order of appearance is arbitrary in this sense.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demirkiran, G., Dede, O., Yalcin, N. et al. Selective estrogen receptor modulation prevents scoliotic curve progression: radiologic and histomorphometric study on a bipedal C57Bl6 mice model. Eur Spine J 23, 455–462 (2014). https://doi.org/10.1007/s00586-013-3072-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-013-3072-2

Keywords

Navigation