Skip to main content

Advertisement

Log in

Disc degeneration-related clinical phenotypes

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

The phenotype, or observable trait of interest, is at the core of studies identifying associated genetic variants and their functional pathways, as well as diagnostics. Yet, despite remarkable technological developments in genotyping and progress in genetic research, relatively little attention has been paid to the equally important issue of phenotype. This is especially true for disc degeneration-related disorders, and the concept of degenerative disc disease, in particular, where there is little consensus or uniformity of definition. Greater attention and rigour are clearly needed in the development of disc degeneration-related clinical phenotypes if we are to see more rapid advancements in knowledge of this area. When selecting phenotypes, a basic decision is whether to focus directly on the complex clinical phenotype (e.g. the clinical syndrome of spinal stenosis), which is ultimately of interest, or an intermediate phenotype (e.g. dural sac cross-sectional area). While both have advantages, it cannot be assumed that associated gene variants will be similarly relevant to both. Among other considerations are factors influencing phenotype identification, comorbidities that are often present, and measurement issues. Genodisc, the European research consortium project on disc-related clinical pathologies has adopted a strategy that will allow for the careful characterisation and examination of both the complex clinical phenotypes of interest and their components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pennisi E (2011) Human genome 10th anniversary. Digging deep into the microbiome. Science 331(6020):1008–1009

    Article  PubMed  Google Scholar 

  2. Plenge RM, Bridges SL Jr, Huizinga TWJ, Criswell LA, Gregersen PK (2011) Recommendations for publication of genetic association studies in Arthritis & Rheumatism. Arthritis Rheum 63(10):2839–2847

    Article  PubMed  Google Scholar 

  3. Chen Y, Shen H, Yang F, Liu P-, Tang N, Recker RR et al (2009) Choice of study phenotype in osteoporosis genetic research. J Bone Miner Metab 27(2):121–126

    Article  PubMed  Google Scholar 

  4. Yu-Ping Kao P, Chan D, Samartzis D, Sham PC, Song YQ (2011) Genetics of lumbar disk degeneration: technology, study designs, and risk factors. Orthop Clin North Am 42(4):479–486

    Article  Google Scholar 

  5. Battie MC, Videman T, Levalahti E, Gill K, Kaprio J (2007) Heritability of low back pain and the role of disc degeneration. Pain 131(3):272–280

    Article  PubMed  Google Scholar 

  6. Diatchenko L, Nackley AG, Tchivileva IE, Shabalina SA, Maixner W (2007) Genetic architecture of human pain perception. Trends Genet 23(12):605–613

    Article  CAS  PubMed  Google Scholar 

  7. Keskitalo K, Broms U, Heliövaara M, Ripatti S, Surakka I et al (2009) Association of serum cotinine level with a cluster of three nicotinic acetylcholine receptor genes (CHRNA3/CHRNA5/CHRNB4) on chromosome 15. Hum Mol Genet 18(20):4007–4012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Sambrook PN, MacGregor AJ, Spector TD (1999) Genetic influences on cervical and lumbar disc degeneration: a magnetic resonance imaging study in twins. Arthritis Rheum 42(2):366–372

    Article  CAS  PubMed  Google Scholar 

  9. Battié MC, Videman T, Levälahti E, Gill K, Kaprio J (2008) Genetic and environmental effects on disc degeneration by phenotype and spinal level: a multivariate twin study. Spine 33(25):2801–2808

    Article  PubMed  Google Scholar 

  10. Noponen-Hietala N, Kyllonen E, Mannikko M, Ilkko E, Karppinen J, Ott J et al (2003) Sequence variations in the collagen IX and XI genes are associated with degenerative lumbar spinal stenosis. Ann Rheum Dis 62(12):1208–1214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Matsui Y, Mirza SK, Wu JJ, Carter B, Bellabarba C, Shaffrey CI et al (2004) The association of lumbar spondylolisthesis with collagen IX tryptophan alleles. J Bone Joint Surg Br 86(7):1021–1026

    Article  CAS  PubMed  Google Scholar 

  12. Hyun SJ, Park BG, Rhim SC, Bae CW, Lee JK, Roh SW et al (2011) A haplotype at the COL9A2 gene locus contributes to the genetic risk for lumbar spinal stenosis in the Korean population. Spine 36(16):1273–1278

    Article  PubMed  Google Scholar 

  13. North American Spine Society (2011) Evidence-based clinical guidelines for multidisciplinary spine care: diagnosis and treatment of degenerative lumbar spinal stenosis

  14. Battie MC, OrtegaAlonso A, Niemelainen R, Gill K, Levalahti E, Kaprio J et al (2011) Genetic influences on lumbar spinal stenosis: a multivariate twin study: P56. Spine: Affiliated society meeting abstracts October 2011 (Supplement 2011 ISSLS Society Meeting Abstracts)

  15. Kalichman L, Cole R, Kim DH, Li L, Suri P, Guermazi A et al (2009) Spinal stenosis prevalence and association with symptoms: the Framingham Study. Spine J 9(7):545–550

    Article  PubMed Central  PubMed  Google Scholar 

  16. Genevay S, Atlas SJ, Katz JN (2010) Variation in eligibility criteria from studies of radiculopathy due to a herniated disc and of neurogenic claudication due to lumbar spinal stenosis: a structured literature review. Spine 35(7):803–811

    PubMed Central  PubMed  Google Scholar 

  17. Steurer J, Roner S, Gnannt R, Hodler J (2011) Quantitative radiologic criteria for the diagnosis of lumbar spinal stenosis: a systematic literature review. BMC Musculoskelet Disord 12:175

    Article  PubMed Central  PubMed  Google Scholar 

  18. Cummins J, Lurie JD, Tosteson TD, Hanscom B, Abdu WA, Birkmeyer NJO et al (2006) Descriptive epidemiology and prior healthcare utilization of patients in the Spine Patient Outcomes Research Trial’s (SPORT) three observational cohorts: disc herniation, spinal stenosis, and degenerative spondylolisthesis. Spine 31(7):806–814

    Article  PubMed Central  PubMed  Google Scholar 

  19. Pearson A, Blood E, Lurie J, Tosteson T, Abdu WA, Hillibrand A et al (2010) Degenerative spondylolisthesis versus spinal stenosis: does a slip matter? Comparison of baseline characteristics and outcomes (SPORT). Spine 35(3):298–305

    Article  PubMed Central  PubMed  Google Scholar 

  20. Watters WC III, Bono CM, Gilbert TJ, Kreiner DS, Mazanec DJ, Shaffer WO et al (2009) An evidence-based clinical guideline for the diagnosis and treatment of degenerative lumbar spondylolisthesis. Spine J 9(7):609–614

    Article  PubMed  Google Scholar 

  21. Aebi M (2005) The adult scoliosis. Eur Spine J 14(10):925–948

    Article  PubMed  Google Scholar 

  22. Birknes JK, Harrop JS, White AP, Albert TJ, Shaffrey CI (2008) Adult degenerative scoliosis: a review. Neurosurgery 63(3 SUPPL.):A94–A103

    Article  Google Scholar 

  23. Oskouian RJ Jr, Shaffrey CI (2006) Degenerative lumbar scoliosis. Neurosurg Clin N Am 17(3):299–315

    Article  PubMed  Google Scholar 

  24. Fairbank J, Gwilym SE, France JC, Daffner SD, Dettori J, Hermsmeyer J et al (2011) The role of classification of chronic low back pain. Spine 36(21 SUPPL):S19–S42

    Article  PubMed  Google Scholar 

  25. Wang Y, Videman T, Battié MC (2013) Morphometrics and lesions of vertebral end plates are associated with lumbar disc degeneration: evidence from cadaveric spines. J Bone Joint Surg Am 95(5):e26. doi:10.2106/JBJS.L.00124

  26. Wang Y, Videman T, Battié MC (2012) ISSLS prize winner: lumbar vertebral endplate lesions: Associations with disc degeneration and back pain history. Spine 37(17):1490–1496

    Article  PubMed  Google Scholar 

  27. Kyere KA, Than KD, Wang AC, Rahman SU, Valdivia–Valdivia JM, La Marca F et al (2012) Schmorl’s nodes. Eur Spine J 21(11):2115–2121

    Article  PubMed Central  PubMed  Google Scholar 

  28. Williams FMK, Manek NJ, Sambrook PN, Spector TD, MacGregor AJ (2007) Schmorl’s nodes: common, highly heritable, and related to lumbar disc disease. Arthritis Rheum 57(5):855–860

    Article  CAS  PubMed  Google Scholar 

  29. De Roos A, Kressel H, Spritzer C, Dalinka M (1987) MR imaging of marrow changes adjacent to end plates in degenerative lumbar disk disease. Am J Roentgenol 149(3):531–534

    Article  Google Scholar 

  30. Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR (1988) Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 166(1 Pt 1):193–199

    CAS  PubMed  Google Scholar 

  31. Modic MT, Masaryk TJ, Ross JS, Carter JR (1988) Imaging of degenerative disk disease. Radiology 168(1):177–186

    CAS  PubMed  Google Scholar 

  32. Braithwaite I, White J, Saifuddin A, Renton P, Taylor BA (1998) Vertebral end-plate (Modic) changes on lumbar spine MRI: correlation with pain reproduction at lumbar discography. Eur Spine J 7(5):363–368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Wang Y, Videman T, Niemeläinen R, Battié MC (2011) Quantitative measures of modic changes in lumbar spine magnetic resonance imaging: intra- and inter-rater reliability. Spine 36(15):1236–1243

    Article  PubMed  Google Scholar 

  34. Wang Y, Videman T, Battié MC (2012) Modic changes: prevalence, distribution patterns, and association with age in white men. Spine J 12(5):411–416

    Article  CAS  PubMed  Google Scholar 

  35. Jensen TS, Karppinen J, Sorensen JS, Niinimäki J, Leboeuf-Yde C (2008) Vertebral endplate signal changes (Modic change): a systematic literature review of prevalence and association with non-specific low back pain. Eur Spine J 17(11):1407–1422

    Article  PubMed Central  PubMed  Google Scholar 

  36. Jensen RK, Leboeuf-Yde C (2011) Is the presence of Modic changes associated with the outcomes of different treatments? A systematic critical review. BMC Musculoskelet Disord 12:183

    Article  PubMed Central  PubMed  Google Scholar 

  37. Albert HB, Lambert P, Rollason J, Sorensen JS, Worthington T, Pedersen MB et al (2013) Does nuclear tissue infected with bacteria following disc herniations lead to Modic changes in the adjacent vertebrae? Eur Spine J 22(4):690–696

    Article  PubMed Central  PubMed  Google Scholar 

  38. Albert HB, Sorensen JS, Christensen BS, Manniche C (2013) Antibiotic treatment in patients with chronic low back pain and vertebral bone edema (Modic type 1 changes): a double-blind randomized clinical controlled trial of efficacy. Eur Spine J 22(4):697–707

    Article  PubMed Central  PubMed  Google Scholar 

  39. Aebi M (2013) Is low back pain after disc herniation with Modic Type 1 changes a low-grade infection? Eur Spine J 22(4):689

    Article  PubMed Central  PubMed  Google Scholar 

  40. Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine 31(18):2151–2161

    Article  PubMed  Google Scholar 

  41. Rajaee SS, Bae HW, Kanim LEA, Delamarter RB (2012) Spinal fusion in the United States: analysis of trends from 1998 to 2008. Spine 37(1):67–76

    Article  PubMed  Google Scholar 

  42. Weiner BK (2008) Spine update: the biopsychosocial model and spine care. Spine 33(2):219–223

    Article  PubMed  Google Scholar 

  43. Paassilta P, Lohiniva J, Göring HHH, Perälä M, Räinä SS, Karppinen J et al (2001) Identification of a novel common genetic risk factor for lumbar disk disease. JAMA 285(14):1843–1849

    Article  CAS  PubMed  Google Scholar 

  44. Kawaguchi Y, Kanamori M, Ishihara H, Ohmori K, Matsui H, Kimura T (2002) The association of lumbar disc disease with vitamin-D receptor gene polymorphism. J Bone Joint Surg Am 84(11):2022–2028

    PubMed  Google Scholar 

  45. Seki S, Kawaguchi Y, Chiba K, Mikami Y, Kizawa H, Oya T et al (2005) A functional SNP in CILP, encoding cartilage intermediate layer protein, is associated with susceptibility to lumbar disc disease. Nat Genet 37(6):607–612

    Article  CAS  PubMed  Google Scholar 

  46. Sun Z-, Miao L, Zhang Y-, Ming L (2009) Association between the -1562 C/T polymorphism of matrix metalloproteinase-9 gene and lumbar disc disease in the young adult population in North China. Connect Tissue Res 50(3):181–185

    Article  CAS  PubMed  Google Scholar 

  47. Tilkeridis C, Bei T, Garantziotis S, Stratakis CA (2005) Association of a COL1A1 polymorphism with lumbar disc disease in young military recruits. J Med Genet 42(7):e44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Cheung KMC, Chan D, Karppinen J, Chen Y, Jim JJT, Yip S- et al (2006) Association of the Taq I allele in vitamin D receptor with degenerative disc disease and disc bulge in a Chinese population. Spine 31(10):1143–1148

    Article  PubMed  Google Scholar 

  49. Williams FMK, Kato BS, Livshits G, Sambrook PN, Spector TD, MacGregor AJ (2008) Lumbar disc disease shows linkage to chromosome 19 overlapping with a QTL for hand OA. Ann Rheum Dis 67(1):117–119

    Article  CAS  PubMed  Google Scholar 

  50. Dai F, Belfer I, Schwartz CE, Banco R, Martha JF, Tighioughart H et al (2010) Association of catechol-O-methyltransferase genetic variants with outcome in patients undergoing surgical treatment for lumbar degenerative disc disease. Spine J 10(11):949–957

    Article  PubMed  Google Scholar 

  51. Kim DH, Dai F, Belfer I, Banco RJ, Martha JF, Tighiouart H et al (2010) Polymorphic variation of the guanosine triphosphate cyclohydrolase 1 gene predicts outcome in patients undergoing surgical treatment for lumbar degenerative disc disease. Spine 35(21):1909–1914

    Article  PubMed  Google Scholar 

  52. Eser B, Cora T, Eser O, Kalkan E, Haktanir A, Erdogan MO et al (2010) Association of the polymorphisms of vitamin D receptor and aggrecan genes with degenerative disc disease. Gent Test Mol Biomarkers 14(3):313–317

    Article  CAS  Google Scholar 

  53. Eser O, Eser B, Cosar M, Erdogan MO, Aslan A, Yildiz H et al (2011) Short aggrecan gene repetitive alleles associated with lumbar degenerative disc disease in Turkish patients. Genet Mol Res 10(3):1923–1930

    Article  CAS  PubMed  Google Scholar 

  54. Song Y-, Cheung KMC, Ho DWH, Poon SCS, Chiba K, Kawaguchi Y et al (2008) Association of the asporin D14 allele with lumbar-disc degeneration in Asians. Am J Hum Genet 82(3):744–747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Valdes AM, Hassett G, Hart DJ, Spector TD (2005) Radiographic progression of lumbar spine disc degeneration is influenced by variation at inflammatory genes: a candidate SNP association study in the Chingford cohort. Spine 30(21):2445–2451

    Article  PubMed  Google Scholar 

  56. Videman T, Saarela J, Kaprio J, Näkki A, Levälahti E, Gill K et al (2009) Associations of 25 structural, degradative, and inflammatory candidate genes with lumbar disc desiccation, bulging, and height narrowing. Arthritis Rheum 60(2):470–481

    Article  CAS  PubMed  Google Scholar 

  57. Meyerding AW (1941) Low backache and sciatic pain associated with spondylolisthesis and protruded intervertebral disc: incidence, significance and treatment. J Bone Joint Surg 23:461–470

    Google Scholar 

  58. Deyo RA, Battie M, Beurskens AJHM, Bombardier C, Croft P, Koes B et al (1998) Outcome measures for low back pain research: a proposal for standardized use. Spine 23(18):2003–2013

    Article  CAS  PubMed  Google Scholar 

  59. Pincus T, Santos R, Breen A, Burton AK, Underwood M (2008) A review and proposal for a core set of factors for prospective cohorts in low back pain: a consensus statement. Arthritis Rheum 59(1):14–24

    Article  PubMed  Google Scholar 

  60. Dionne CE, Dunn KM, Croft PR, Nachemson AL, Buchbinder R, Walker BF et al (2008) A consensus approach toward the standardization of back pain definitions for use in prevalence studies. Spine 33(1):95–103

    Article  PubMed  Google Scholar 

  61. Schneiderman G, Flannigan B, Kingston S (1987) Magnetic resonance imaging in the diagnosis of disc degeneration: correlation with discography. Spine 12(3):276–281

    Article  CAS  PubMed  Google Scholar 

  62. Kales SN, Linos A, Chatzis C, Sai Y, Halla M, Nasioulas G et al (2004) The role of collagen IX tryptophan polymorphisms in symptomatic intervertebral disc disease in Southern European patients. Spine 29(11):1266–1270

    Article  PubMed  Google Scholar 

  63. Seki S, Kawaguchi Y, Mori M, Mio F, Chiba K, Mikami Y et al (2006) Association study of COL9A2 with lumbar disc disease in the Japanese population. J Hum Genet 51(12):1063–1067

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by Seventh Framework Programme Health-2007-A; Grant agreement no: 201626, and the Canada Research Chairs Program.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele C. Battié.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battié, M.C., Lazáry, Á., Fairbank, J. et al. Disc degeneration-related clinical phenotypes. Eur Spine J 23 (Suppl 3), 305–314 (2014). https://doi.org/10.1007/s00586-013-2903-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-013-2903-5

Keywords

Navigation