Skip to main content
Log in

Biomechanical, histological and histomorphometric analyses of calcium phosphate cement compared to PMMA for vertebral augmentation in a validated animal model

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Introduction

Calcium phosphate cements (biocements) are alternative materials for use in vertebral augmentation procedures, and are a potential solution to problems associated with polymethylmethacrylate (PMMA) cements. The aim of this study is to demonstrate the utility of percutaneously injected biocements compared with PMMA in a validated animal model of osteoporosis.

Materials and methods

Fortyseven augmentation procedures were performed on 11 osteoporotic sheep. 9 vertebrae were augmented with PMMA and 38 with a biocement. The animals were killed in four groups: at 7 days, 3 months, 6 months, and 1 year after intervention. Radiological study and TC of the pieces were obtained to evaluate for leakage, cement diffusion, and integration. In total, 26 biomechanic studies and 27 histomorphometry analyses were performed, included control vertebrae.

Results

In 20.9% of the vertebrae, the hole was empty at sacrifice. The pattern of fracture was heterogeneous, and cement augmentation did not increase vertebral strength or decrease vertebral stiffness compared to control vertebrae, with neither PMMA or biocement. The rate of remodeling of the biocement was not predictable. In the single majority, there is peripheral remodeling, staying the volume of injected biocement stable.

Conclusions

Even though this animal model may not be useful to analyze the biomechanical pattern of treated vertebrae, it demonstrates that the percutaneous use of biocements in vertebral augmentation techniques is not predictable. This is one reason not to recommend its use presently as a substitute for PMMA in vertebral reinforcement procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alvarez L, Alcaraz M, Pérez-Higueras A, Granizo JJ, de Miguel I, Rossi RE, Quiñones D (2006) Percutaneous vertebroplasty: functional improvement in patients with osteoporotic compression fractures. Spine 31:1113–1118. doi:10.1097/01.brs.0000216487.97965.38

    Article  PubMed  Google Scholar 

  2. Ambard AJ, Mueninghoff L (2006) Calcium phosphate cement: review of mechanical and biological properties. J Prosthodont 15:321–328. doi:10.1111/j.1532-849X.2006.00129.x

    Article  PubMed  Google Scholar 

  3. Belkoff SM, Mathis JM, Jasper LE, Deramond H (2001) An ex vivo biomechanical evaluation of a hydroxyapatite cement for use with vertebroplasty. Spine 26:1542–1546

    Article  PubMed  CAS  Google Scholar 

  4. Blattert TR, Jestaedt L, Weckbach A (2009) Suitability of a calcium phosphate cement in osteoporotic vertebral body fracture augmentation: a controlled, randomized, clinical trial of balloon kyphoplasty comparing calcium phosphate versus polymethylmethacrylate. Spine 34:108–114. doi:10.1097/BRS.0b013e31818f8bc1

    Article  PubMed  Google Scholar 

  5. Bodde EW, Boerman OC, Russel FG, Mikos AG, Spauwen PH, Jansen JA (2008) The kinetic and biological activity of different loaded rhBMP-2 calcium phosphate cement implants in rats. J Biomed Mater Res A 87:780–791. doi:10.1002/jbm.a.31830

    PubMed  Google Scholar 

  6. Bodde EW, Cammaert CT, Wolke JG, Spauwen PH, Jansen JA (2007) Investigation as to the osteoinductivity of macroporous calcium phosphate cement in goats. J Biomed Mater Res B Appl Biomater 83:161–168. doi:10.1002/jbm.b.30780

    PubMed  Google Scholar 

  7. del Real RP, Wolke JG, Vallet-Regí M, Jansen JA (2002) A new method to produce macropores in calcium phosphate cements. Biomaterials 23:3673–3680

    Article  PubMed  CAS  Google Scholar 

  8. Fernández E, Gil FJ, Ginebra MP, Driessens FC, Planell JA, Best SM (1999) Production and characterization of new calcium phosphate bone cements in the CaHPO4-alpha-Ca3(PO4)2 system: pH, workability and setting times. J Mater Sci Mater Med 10:223–230

    Article  PubMed  Google Scholar 

  9. Fribourg D, Tang C, Sra P, Delamarter R, Bae H (2004) Incidence of subsequent vertebral fracture after kyphoplasty. Spine 29:2270–2276

    Article  PubMed  Google Scholar 

  10. Ginebra MP, Driessens FC, Planell JA (2004) Effect of the particle size on the micro and nanostructural features of a calcium phosphate cement: a kinetic analysis. Biomaterials 25:3453–3462. doi:10.1016/j.biomaterials.2003.10.049

    Article  PubMed  CAS  Google Scholar 

  11. Grafe IA, Baier M, Nöldge G, Weiss C, Da Fonseca K, Hillmeier J, Libicher M, Rudofsky G, Metzner C, Nawroth P, Meeder PJ, Kasperk C (2008) Calcium-phosphate and polymethylmethacrylate cement in long-term outcome after kyphoplasty of painful osteoporotic vertebral fractures. Spine 33:1284–1290. doi:10.1097/BRS.0b013e3181714a84

    Article  PubMed  Google Scholar 

  12. Hadjipavlou AG, Tzermiadianos MN, Katonis PG, Szpalski M (2005) Percutaneous vertebroplasty and balloon kyphoplasty for the treatment of osteoporotic vertebral compression fractures and osteolytic tumours. J Bone Joint Surg Br 87:1595–1604. doi:10.1302/0301-620X.87B12.16074

    Article  PubMed  CAS  Google Scholar 

  13. Haung KY, Yan JJ (2005) Lin RM (2005) Histologic findings of retrieved speciments of vertebroplasty with polymethylmethacrylate cement. Spine 30:E585–E588

    Article  Google Scholar 

  14. Heo HD, Cho YJ, Sheen SH, Kuh SU, Cho SM, Oh SM (2009) Morphological changes of injected calcium phosphate cement in osteoporotic compressed vertebral bodies. Osteoporosis Int 20:2063–2070. doi:10.1007/s00198-009-0911-4

    Article  CAS  Google Scholar 

  15. Hitchon PW, Goel V, Drake J, Taggard D, Brenton M, Rogge T, Torner JC (2001) Comparison of the biomechanics of hydroxyapatite and polymethylmethacrylate vertebroplasty in a cadaveric spinal compression fracture model. J Neurosurg 95:215–220

    PubMed  CAS  Google Scholar 

  16. Hong SJ, Park YK, Kim JH, Lee SH, Ryu KN, Park CM, Kim YS (2006) The biomechanical evaluation of calcium phosphate cements for use in vertebroplasty. J Neurosurg 4:154–159. doi:10.3171/spi.2006.4.2.154

    Google Scholar 

  17. Krebs J, Aebli N, Goss BG, Sugiyama S, Bardyn T, Boecken I, Leamy PJ, Ferguson SJ (2007) Cardiovascular changes after pulmonary embolism from injecting calcium phosphate cement. J Biomed Mater Res B Appl Biomater 82:526–532. doi:10.1002/jbm.b.30758

    PubMed  Google Scholar 

  18. Lee WS, Sung KH, Jeong HT, Sung YS, Hyun YI, Choi JY, Lee KS, Ok CS, Choi YW (2006) Risk factors of developing new symptomatic vertebral compression fractures after percutaneous vertebroplasty in osteoporotic patients. Eur Spine J 15:1777–1783. doi:10.1007/s00586-006-0151-7

    Article  PubMed  Google Scholar 

  19. Libicher M, Hillmeier J, Liegibel U, Sommer U, Pyerin W, Vetter M, Meinzer HP, Grafe I, Meeder P, Nöldge G, Nawroth P, Kasperk C (2006) Osseous integration of calcium phosphate in osteoporotic vertebral fractures after kyphoplasty: initial results from a clinical and experimental pilot study. Osteoporos Int 17:1208–1215. doi:10.1007/s00198-006-0128-8

    Article  PubMed  CAS  Google Scholar 

  20. Lieberman IH, Togawa D, Kayanja MM (2005) Vertebroplasty and kyphoplasty: filler materials. Spine J 5:305S–316S. doi:10.1016/j.spinee.2005.02.020

    Article  PubMed  Google Scholar 

  21. Lill CA, Gerlach UV, Eckhardt C, Goldhahn J, Schneider E (2002) Bone changes due to glucocorticoid application in an ovariectomized animal model for fracture treatment in osteoporosis. Osteoporos Int 13:407–414

    Article  PubMed  CAS  Google Scholar 

  22. McGirt MJ, Parker SL, Wolinsky JP, Witham TF, Bydon A, Gokaslan ZL (2009) Vertebroplasty and kyphoplasty for the treatment of vertebral compression fractures: an evidenced-based review of the literature. Spine J 9:501–508. doi:10.1016/j.spinee.2009.01.003

    Article  PubMed  Google Scholar 

  23. Nouda S, Tomita S, Kin A, Kawahara K, Kinoshita M (2009) Adjacent vertebral body fracture following vertebroplasty with polymethylmethacrylate or calcium phosphate cement: biomechanical evaluation of the cadaveric spine. Spine 34:2613–2618. doi:10.1097/BRS.0b013e3181abc150

    Article  PubMed  Google Scholar 

  24. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols and units. J Bone Miner Res 2:595–610

    Article  PubMed  CAS  Google Scholar 

  25. Peh WC, Munk PL, Rashid F, Gilula LA (2008) Percutaneous vertebral augmentation: vertebroplasty, kyphoplasty and skyphoplasty. Radiol Clin North Am 46:611–635. doi:10.1016/j.rcl.2008.05.005

    Article  PubMed  Google Scholar 

  26. Sarda S, Nilsson M, Balcells M, Fernández E (2003) Influence of surfactant molecules as air-entraining agent for bone cement macroporosity. J Biomed Mater Res A 65:215–221

    Article  PubMed  CAS  Google Scholar 

  27. Takagi S, Chow LC (2001) Formation of macropores in calcium phosphate cement implants. J Mater Sci Mater Med 12:135–139

    Article  PubMed  CAS  Google Scholar 

  28. Tomita S, Kin A, Yazu M, Abe M (2003) Biomechanical evaluation of kyphoplasty and vertebroplasty with calcium phosphate cement in a simulated osteoporotic compression fracture. J Orthop Sci 8:192–197

    Article  PubMed  CAS  Google Scholar 

  29. Turner TM, Urban RM, Singh K, Hall DJ, Renner SM, Lim TH, Tomlinson MJ, An HS (2008) Vertebroplasty comparing injectable calcium phosphate cement compared with polymethylmethacrylate in a unique canine vertebral body large defect model. Spine J 8:482–487. doi:10.1016/j.spinee.2006.12.007

    Article  PubMed  Google Scholar 

  30. Uppin AA, Hirsch JA, Centenera LV, Pfiefer BA, Pazianos AG, Choi IS (2003) Occurrence of new vertebral body fracture after percutaneous vertebroplasty in patients with osteoporosis. Radiology 226:119–124

    Article  PubMed  Google Scholar 

  31. Vlad MD, Sindilar EV, Mariñoso ML, Poeată I, Torres R, López J, Barracó M, Fernández E (2010) Osteogenic biphasic calcium sulphate dihydrate/iron-modified alpha-tricalcium phosphate bone cement for spinal applications: in vivo study. Acta Biomater 6:607–616. doi:10.1016/j.actbio.2009.07.010

    Article  PubMed  CAS  Google Scholar 

  32. Willert HG (1973) Tissue reactions around joint implants and bone cement. In: Chapchl G (ed) Arthroplasty of the Hip. Thieme, Stuttgraft, pp 11–21

    Google Scholar 

  33. Zarrinkalam MR, Beard H, Schultz CG, Moore RJ (2009) Validation of the sheep as a large animal model for the study of vertebral osteoporosis. Eur Spine J 18:244–253. doi:10.1007/s00586-008-0813-8

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Alvarez Galovich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galovich, L.A., Perez-Higueras, A., Altonaga, J.R. et al. Biomechanical, histological and histomorphometric analyses of calcium phosphate cement compared to PMMA for vertebral augmentation in a validated animal model. Eur Spine J 20 (Suppl 3), 376 (2011). https://doi.org/10.1007/s00586-011-1905-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00586-011-1905-4

Keywords

Navigation