Skip to main content
Log in

Reference values for vertebral shape in young Chinese women: implication for assessment of vertebral deformity

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

The race- and sex-specific reference values for vertebral shape are important to determine the prevalence of osteoporotic vertebral fracture. However, these reference values are absent in Chinese women. In the present study, the anterior, middle and posterior heights and the ratios of these heights were measured from 14 vertebral bodies (T4–L5) in 60 premenopausal Chinese women (aged 19–25 years). Cutoff values were set as standard deviations (3 and 3.5 SD) and percentages (15 and 20%) below the means of vertebral height (VH) ratios to define vertebral deformities. The number of subjects with a VH ratio lower than −15% cutoff were significantly more than those with a VH ratio lower than −3 SD cutoff (p < 0.05), but this difference did not occur when a −20% cutoff was selected. A few VH ratios were distributed below −20% and −3 SD cutoffs, and none was below −3.5 SD. The vertebral shape defined by VH ratios was different between Chinese and European women. We conclude that 3.5 SD below the reference mean is an ideal cutoff value for the definition of prevalent vertebral fractures in Chinese women, and reference data should be obtained from young premenopausal women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cauley JA, Thompson DE, Ensrud KC, Scott JC, Black D (2000) Risk of mortality following clinical fractures. Osteoporos Int 11:556–561

    Article  CAS  PubMed  Google Scholar 

  2. Kado DM, Browner WS, Palermo L, Nevitt MC, Genant HK, Cummings SR (1999) Vertebral fractures and mortality in older women: a prospective study. Study of Osteoporotic Fractures Research Group. Arch Intern Med 159:1215–1220

    Article  CAS  PubMed  Google Scholar 

  3. Jalava T, Sarna S, Pylkkanen L, Mawer B, Kanis JA, Selby P, Davies M, Adams J, Francis RM, Robinson J, McCloskey E (2003) Association between vertebral fracture and increased mortality in osteoporotic patients. J Bone Miner Res 18:1254–1260

    Article  PubMed  Google Scholar 

  4. Nevitt MC, Thompson DE, Black DM, Rubin SR, Ensrud K, Yates AJ, Cummings SR (2000) Effect of alendronate on limited-activity days and bed-disability days caused by back pain in postmenopausal women with existing vertebral fractures. Fracture Intervention Trial Research Group. Arch Intern Med 160:77–85

    Article  CAS  PubMed  Google Scholar 

  5. Lindsay R, Silverman SL, Cooper C, Hanley DA, Barton I, Broy SB, Licata A, Benhamou L, Geusens P, Flowers K, Stracke H, Seeman E (2001) Risk of new vertebral fracture in the year following a fracture. JAMA 285:320–323

    Article  CAS  PubMed  Google Scholar 

  6. Jackson SA, Tenenhouse A, Robertson L (2000) Vertebral fracture definition from population-based data: preliminary results from the Canadian Multicenter Osteoporosis Study (CaMos). Osteoporos Int 11:680–687

    Article  CAS  PubMed  Google Scholar 

  7. Black DM, Palermo L, Nevitt MC, Genant HK, Christensen L, Cummings SR (1999) Defining incident vertebral deformity: a prospective comparison of several approaches. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res 14:90–101

    Article  CAS  PubMed  Google Scholar 

  8. Kleerekoper M, Parfitt AM (1984) Measurement of vertebral fracture rates in osteoporosis. In: Christiansen C, Arnaud CD, Nordin BE, Parfitt AM, Peck WA, Riggs BL (eds) Proc Copenhagen International Symposium on Osteoporosis. Aalborg Stiftsbogtrykkeri, pp 103–109

  9. Wu CY, Li J, Jergas M, Genant HK (1995) Comparison of semiquantitative and quantitative techniques for the assessment of prevalent and incident vertebral fractures. Osteoporos Int 5:354–370

    Article  CAS  PubMed  Google Scholar 

  10. Rea JA, Chen MB, Li J, Potts E, Fan B, Blake GM, Steiger P, Smith IG, Genant HK, Fogelman I (1999) Morphometric X-ray absorptiometry and morphometric radiography of the spine: a comparison of analysis precision in normal and osteoporotic subjects. Osteoporos Int 9:536–544

    CAS  PubMed  Google Scholar 

  11. McCloskey EV, Spector TD, Eyres KS, Fern ED, O’Rourke N, Vasikaran S, Kanis JA (1993) The assessment of vertebral deformity: a method for use in population studies and clinical trials. Osteoporos Int 3:138–147

    Article  CAS  PubMed  Google Scholar 

  12. Wasnich RD (1996) Vertebral fracture epidemiology. Bone 18:179S–183S

    Article  CAS  PubMed  Google Scholar 

  13. Zebaze RM, Maalouf G, Wehbe J, Nehme A, Maalouf N, Seeman E (2004) The varying distribution of intra- and inter-vertebral height ratios determines the prevalence of vertebral fractures. Bone 35:348–356

    Article  PubMed  Google Scholar 

  14. Black DM, Cummings SR, Stone K, Hudes E, Palermo L, Steiger P (1991) A new approach to defining normal vertebral dimensions. J Bone Miner Res 6:883–892

    Article  CAS  PubMed  Google Scholar 

  15. Black DM, Palermo L, Nevitt MC, Genant HK, Epstein R, San Valentin R, Cummings SR (1995) Comparison of methods for defining prevalent vertebral deformities: the Study of Osteoporotic Fractures. J Bone Miner Res 10:890–902

    Article  CAS  PubMed  Google Scholar 

  16. Melton LJ 3rd, Lane AW, Cooper C, Eastell R, O’Fallon WM, Riggs BL (1993) Prevalence and incidence of vertebral deformities. Osteoporos Int 3:113–119

    Article  PubMed  Google Scholar 

  17. Guglielmi G, Diacinti D, van Kuijk C, Aparisi F, Krestan C, Adams JE, Link TM (2008) Vertebral morphometry: current methods and recent advances. Eur Radiol 18:1484–1496

    Article  CAS  PubMed  Google Scholar 

  18. Melton LJ 3rd, Kan SH, Frye MA, Wahner HW, O’Fallon WM, Riggs BL (1989) Epidemiology of vertebral fractures in women. Am J Epidemiol 129:1000–1011

    PubMed  Google Scholar 

  19. Pongchaiyakul C, Nguyen ND, Jones G, Center JR, Eisman JA, Nguyen TV (2005) Asymptomatic vertebral deformity as a major risk factor for subsequent fractures and mortality: a long-term prospective study. J Bone Miner Res 20:1349–1355

    Article  PubMed  Google Scholar 

  20. Cauley JA, Palermo L, Vogt M, Ensrud KE, Ewing S, Hochberg M, Nevitt MC, Black DM (2008) Prevalent vertebral fractures in black women and white women. J Bone Miner Res 23:1458–1467

    Article  PubMed  Google Scholar 

  21. Diacinti D, Acca M, D’Erasmo E, Tomei E, Mazzuoli GF (1995) Aging changes in vertebral morphometry. Calcif Tissue Int 57:426–429

    Article  CAS  PubMed  Google Scholar 

  22. O’Neill TW, Varlow J, Felsenberg D, Johnell O, Weber K, Marchant F, Delmas PD, Cooper C, Kanis J, Silman AJ (1994) Variation in vertebral height ratios in population studies. European Vertebral Osteoporosis Study Group. J Bone Miner Res 9:1895–1907

    Article  PubMed  Google Scholar 

  23. Grados F, Fardellone P, Benammar M, Muller C, Roux C, Sebert JL (1999) Influence of age and sex on vertebral shape indices assessed by radiographic morphometry. Osteoporos Int 10:450–455

    Article  CAS  PubMed  Google Scholar 

  24. Salimzadeh A, Moghaddassi M, Alishiri GH, Owlia MB, Kohan L (2007) Vertebral morphometry reference data by X-ray absorptiometry (MXA) in Iranian women. Clin Rheumatol 26:704–709

    Article  CAS  PubMed  Google Scholar 

  25. Ross PD, Wasnich RD, Davis JW, Vogel JM (1991) Vertebral dimension differences between Caucasian populations, and between Caucasians and Japanese. Bone 12:107–112

    Article  CAS  PubMed  Google Scholar 

  26. Genant HK, Jergas M, Palermo L, Nevitt M, Valentin RS, Black D, Cummings SR (1996) Comparison of semiquantitative visual and quantitative morphometric assessment of prevalent and incident vertebral fractures in osteoporosis The Study of Osteoporotic Fractures Research Group. J Bone Miner Res 11:984–996

    Article  CAS  PubMed  Google Scholar 

  27. Ferrar L, Jiang G, Adams J, Eastell R (2005) Identification of vertebral fractures: an update. Osteoporos Int 16:717–728

    Article  CAS  PubMed  Google Scholar 

  28. Kleerekoper M, Peterson EL, Nelson DA, Phillips E, Schork MA, Tilley BC, Parfitt AM (1991) A randomized trial of sodium fluoride as a treatment for postmenopausal osteoporosis. Osteoporos Int 1:155–161

    Article  CAS  PubMed  Google Scholar 

  29. Eastell R, Cedel SL, Wahner HW, Riggs BL, Melton LJ 3rd (1991) Classification of vertebral fractures. J Bone Miner Res 6:207–215

    Article  CAS  PubMed  Google Scholar 

  30. Bonjour JP, Theintz G, Law F, Slosman D, Rizzoli R (1994) Peak bone mass. Osteoporos Int 4:7–13

    Article  PubMed  Google Scholar 

  31. Matkovic V, Jelic T, Wardlaw GM, Ilich JZ, Goel PK, Wright JK, Andon MB, Smith KT, Heaney RP (1994) Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest 93:799–808

    Article  CAS  PubMed  Google Scholar 

  32. Mosekilde L (2000) Age-related changes in bone mass, structure, and strength: effects of loading. Z Rheumatol 59:1–9

    Article  PubMed  Google Scholar 

  33. Anderson M, Hwang SC, Green WT (1965) Growth of the normal trunk in boys and girls during the second decade of life; related to age, maturity, and ossification of the iliac epiphyses. J Bone Joint Surg Am 47:1554–1564

    CAS  PubMed  Google Scholar 

  34. Zebaze RM, Maalouf G, Maalouf N, Seeman E (2004) Loss of regularity in the curvature of the thoracolumbar spine: a measure of structural failure. J Bone Miner Res 19:1099–1104

    Article  PubMed  Google Scholar 

  35. Ishikawa Y, Miyakoshi N, Kasukawa Y, Hongo M, Shimada Y (2009) Spinal curvature and postural balance in patients with osteoporosis. Osteoporos Int [Epub ahead of print]

  36. Cauley JA, Hochberg MC, Lui LY, Palermo L, Ensrud KE, Hillier TA, Nevitt MC, Cummings SR (2007) Long-term risk of incident vertebral fractures. JAMA 298:2761–2767

    Article  CAS  PubMed  Google Scholar 

  37. Melton LJ 3rd, Wenger DE, Atkinson EJ, Achenbach SJ, Berquist TH, Riggs BL, Jiang G, Eastell R (2006) Influence of baseline deformity definition on subsequent vertebral fracture risk in postmenopausal women. Osteoporos Int 17:978–985

    Article  PubMed  Google Scholar 

  38. Kado DM, Prenovost K, Crandall C (2007) Narrative review: hyperkyphosis in older persons. Ann Intern Med 147:330–338

    PubMed  Google Scholar 

  39. Ross PD, Genant HK, Davis JW, Miller PD, Wasnich RD (1993) Predicting vertebral fracture incidence from prevalent fractures and bone density among non-black, osteoporotic women. Osteoporos Int 3:120–126

    Article  CAS  PubMed  Google Scholar 

  40. Klotzbuecher CM, Ross PD, Landsman PB, Abbott TA 3rd, Berger M (2000) Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res 15:721–739

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the key discipline (Orthopedics and Traumatology) of Traditional Chinese Medicine in Shanghai (05 III 027-005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongqiang Chen or Shijing Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, L., Fan, T., Chen, Y. et al. Reference values for vertebral shape in young Chinese women: implication for assessment of vertebral deformity. Eur Spine J 19, 1162–1168 (2010). https://doi.org/10.1007/s00586-010-1317-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-010-1317-x

Keywords

Navigation