Skip to main content
Log in

Comparison of two novel fluoroscopy-based stereotactic methods for cervical pedicle screw placement and review of the literature

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

This experimental study was designed to compare two different fluoroscopy-based stereotactic surgical techniques for transcutaneous cervical pedicle screw (CPS) placement in the subaxial human cervical spine: (1) a custom-made aiming frame (AF) in combination with conventional fluoroscopy versus (2) a targeting device in combination with a computer-assisted image guidance system [i.e. virtual fluoroscopy (VF)]. Surgery was carried out on six preserved human total body specimens in a laboratory setting. Sixty pedicles (levels C3–C7) were measured in a multislice computed tomography (CT) image data set prior to surgery. Two groups consisting of three specimens and 30 pedicles each were defined according to the surgical technique. The AF consisted of radiolucent components with a fully adjustable arm for carrying the instruments necessary for placing the screws. The arm was angled according to the cervical pedicle axis, as determined by the preoperative CT scans and intraoperative lateral fluoroscopy. For VF, a targeting device was combined with a computer-assisted image-guided surgery unit. For both stereotactic techniques, 3.5 mm screws made of carbon fibre polyetheretherketone (ECF-PEEK) were inserted transcutaneously through stab incisions. Screw placement was assessed using a four-point grading system ranging from ideal (I) to unacceptable (III) where I = screw centred in pedicle, IIa = perforation of pedicle wall is less than one-fourth of the screw diameter, IIb = perforation of the pedicle wall is more than one-fourth of the screw diameter without contact to neurovascular structures, and III = CPS in contact with neurovascular structures. Fifty-eight pedicle screws could be evaluated without interfering metal artefacts according to the same CT protocol that was used preoperatively. The AF technique achieved a significantly smaller number of screws in contact with neurovascular structures compared with the VF technique (P = 0.021; Fisher’s exact test) (Grade I n = 15; 64.3% AF vs. n = 13; 43.3% VF and Grade III n = 2; 7.1% AF vs. n = 10; 33.3% VF). Although neither of the two techniques was capable of completely preventing CPS perforations, transcutaneous CPS placement with a conventional fluoroscopy-based stereotactic AF can be considered a less expensive alternative to VF. This AF technique is able to reduce the number and severity of lateral pedicle wall violations compared to screw placement via the wide standard posterior open midline approach to the subaxial cervical spine. The results of this study are discussed in context with those obtained from different published modifications, since the first technical description of this surgical technique in 1994 by Abumi and co-workers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. ICOTEC AG, Altstaetten, Switzerland

  2. EasyTaxis PHILIPS Medical Systems, Wien, Austria

References

  1. Abumi K, Ito M, Taneichi H, Kaneda K (1994) Transpedicular screw fixation for traumatic lesions of the middle and lower cervical spine: description of the techniques and preliminary report. J Spinal Disord 7:19–28

    Article  PubMed  CAS  Google Scholar 

  2. Abumi K, Kaneda K (1997) Pedicle screw fixation for nontraumatic lesions of the cervical spine. Spine 22(16):1853–1863

    Article  PubMed  CAS  Google Scholar 

  3. Abumi K, Shono Y, Ito M, Taneichi H, Kotani Y, Kaneda K (2000) Complications of pedicle screw fixation in reconstructive surgery of the cervical spine. Spine 25(8):962–969

    Article  PubMed  CAS  Google Scholar 

  4. Bale RJ, Hoser C, Rosenberger R, Rieger M, Benedetto KP, Fink C (2001) Osteochondral lesions of the talus: computer-assisted retrograde drilling-feasibility and accuracy in initial experiences. Radiology 218(1):278–282

    PubMed  CAS  Google Scholar 

  5. Blauth M, Duschek R, Schmidt U (1994) Gerät zur Reposition und intraoperativen Lagerung instabiler Verletzungen der Halswirbelsäule. Operat Orthop Traumatol 6(4):285–289

    Article  Google Scholar 

  6. Bozbuga M, Ozturk A, Ari Z, Sahinoglu K, Bayraktar B, Cecen A (2004) Morphometric evaluation of subaxial cervical vertebrae for surgical application of transpedicular screw fixation. Spine 29(17):1876–1880

    Article  PubMed  Google Scholar 

  7. Carbone JJ, Tortolani PJ, Quartararo LG (2003) Fluoroscopically assisted pedicle screw fixation for thoracic and thoracolumbar injuries: technique and short-term complications. Spine 28(1):91–97

    Article  PubMed  Google Scholar 

  8. Ebraheim NA, Xu R, Knight T, Yeasting RA (1997) Morphometric evaluation of lower cervical pedicle and its projection. Spine 22(1):1–6

    Article  PubMed  CAS  Google Scholar 

  9. Holly LT, Foley KT (2003) Intraoperative spinal navigation. Spine 28(15 suppl):S54–S61

    Article  PubMed  Google Scholar 

  10. Holly LT, Foley KT (2006) Percutaneous placement of posterior cervical screws using three-dimensional fluoroscopy. Spine 31(5):536–540

    Article  PubMed  Google Scholar 

  11. Jeanneret B, Gebhard JS, Magerl F (1994) Transpedicular screw fixation of articular mass fracture-separation: results of an anatomical study and operative technique. J Spinal Disord 7(3):222–229

    PubMed  CAS  Google Scholar 

  12. Jones EL, Heller JG, Silcox DH, Hutton WC (1997) Cervical pedicle screws versus lateral mass screws. Anatomic feasibility and biomechanical comparison. Spine 22(9):977–982

    Article  PubMed  CAS  Google Scholar 

  13. Kamimura M, Ebara S, Itoh H, Tateiwa Y, Kinoshita T, Takaoka K (2000) Cervical pedicle screw insertion: assessment of safety and accuracy with computer-assisted image guidance. J Spinal Disord 13(3):218–224

    Article  PubMed  CAS  Google Scholar 

  14. Karaikovic EE, Daubs MD, Madsen RW, Gaines RW Jr (1997) Morphologic characteristics of human cervical pedicles. Spine 22(5):493–500

    Article  PubMed  CAS  Google Scholar 

  15. Karaikovic EE, Kunakornsawat S, Daubs MD, Madsen TW, Gaines RW Jr (2000) Surgical anatomy of the cervical pedicles: landmarks for posterior cervical pedicle entrance localization. J Spinal Disord 13(1):63–72

    Article  PubMed  CAS  Google Scholar 

  16. Karaikovic EE, Yingsakmongkol W, Gaines RW Jr (2001) Accuracy of cervical pedicle screw placement using the funnel technique. Spine 26(22):2456–2462

    Article  PubMed  CAS  Google Scholar 

  17. Kast E, Mohr K, Richter HP, Borm W (2006) Complications of transpedicular screw fixation in the cervical spine. Eur Spine J 15(3):327–334

    Article  PubMed  CAS  Google Scholar 

  18. Kotani Y, Abumi K, Ito M, Minami A (2003) Improved accuracy of computer-assisted cervical pedicle screw insertion. J Neurosurg 99(3 suppl):257–263

    PubMed  Google Scholar 

  19. Kotani Y, Cunningham BW, Abumi K, McAfee PC (1994) Biomechanical analysis of cervical stabilization systems. An assessment of transpedicular screw fixation in the cervical spine. Spine 19(22):2529–2539

    PubMed  CAS  Google Scholar 

  20. Kothe R, Ruther W, Schneider E, Linke B (2004) Biomechanical analysis of transpedicular screw fixation in the subaxial cervical spine. Spine 29(17):1869–1875

    Article  PubMed  Google Scholar 

  21. Kowalski JM, Ludwig SC, Hutton WC, Heller JG (2000) Cervical spine pedicle screws: a biomechanical comparison of two insertion techniques. Spine 25(22):2865–2867

    Article  PubMed  CAS  Google Scholar 

  22. Ludwig SC, Kowalski JM, Edwards CC, Heller JG (2000) Cervical pedicle screws: comparative accuracy of two insertion techniques. Spine 25(20):2675–2681

    Article  PubMed  CAS  Google Scholar 

  23. Ludwig SC, Kramer DL, Balderston RA, Vaccaro AR, Foley KF, Albert TJ (2000) Placement of pedicle screws in the human cadaveric cervical spine: comparative accuracy of three techniques. Spine 25(13):1655–1667

    Article  PubMed  CAS  Google Scholar 

  24. Miller RM, Ebraheim NA, Xu R, Yeasting RA (1996) Anatomic consideration of transpedicular screw placement in the cervical spine. An analysis of two approaches. Spine 21(20):2317–2322

    Article  PubMed  CAS  Google Scholar 

  25. Misenhimer GR, Peek RD, Wiltse LL, Rothman SL, Widell EH Jr (1989) Anatomic analysis of pedicle cortical and cancellous diameter as related to screw size. Spine 14(4):367–372

    Article  PubMed  CAS  Google Scholar 

  26. Neo M, Sakamoto T, Fujibayashi S, Nakamura T (2005) The clinical risk of vertebral artery injury from cervical pedicle screws inserted in degenerative vertebrae. Spine 30(24):2800–2805

    Article  PubMed  Google Scholar 

  27. Nolte LP, Zamorano L, Visarius H, Berlemann U et al (1995) Clinical evaluation of a system for precision enhancement in spine surgery. Clin Biomech (Bristol, Avon) 10(6):293–303

    Article  Google Scholar 

  28. Nolte LP, Zamorano LJ, Jiang Z, Wang Q, Langlotz F, Berlemann U (1995) Image-guided insertion of transpedicular screws. A laboratory set-up. Spine 20(4):497–500

    Article  PubMed  CAS  Google Scholar 

  29. Panjabi MM, Duranceau J, Goel V, Oxland T, Takata K (1991) Cervical human vertebrae. Quantitative three-dimensional anatomy of the middle and lower regions. Spine 16(8):861–869

    PubMed  CAS  Google Scholar 

  30. Panjabi MM, Goel V, Oxland T, Takata K et al (1992) Human lumbar vertebrae. Quantitative three-dimensional anatomy. Spine 17(3):299–306

    Article  PubMed  CAS  Google Scholar 

  31. Panjabi MM, Shin EK, Chen NC, Wang JL (2000) Internal morphology of human cervical pedicles. Spine 25(10):1197–1205

    Article  PubMed  CAS  Google Scholar 

  32. Rampersaud YR, Simon DA, Foley KT (2001) Accuracy requirements for image-guided spinal pedicle screw placement. Spine 26(4):352–359

    Article  PubMed  CAS  Google Scholar 

  33. Reichle E, Sellenschloh K, Morlock M, Eggers C (2002) Placement of pedicle screws using different navigation systems. A laboratory trial with 12 spinal preparations. Orthopade 31(4):368–371

    Article  PubMed  CAS  Google Scholar 

  34. Reinhold M, Magerl F, Rieger M, Blauth M (2007) Cervical pedicle screw placement: feasibility and accuracy of two new insertion techniques based on morphometric data. Eur Spine J 16(1):47–56. Epub 21 April 2006

    Google Scholar 

  35. Rezcallah AT, Xu R, Ebraheim NA, Jackson T (2001) Axial computed tomography of the pedicle in the lower cervical spine. Am J Orthop 30(1):59–61

    Article  PubMed  CAS  Google Scholar 

  36. Richter M, Cakir B, Schmidt R (2005) Cervical pedicle screws: conventional versus computer-assisted placement of cannulated screws. Spine 30(20):2280–2287

    Article  PubMed  Google Scholar 

  37. Richter M, Mattes T, Cakir B (2004) Computer-assisted posterior instrumentation of the cervical and cervico-thoracic spine. Eur Spine J 13(1):50–59

    Article  PubMed  Google Scholar 

  38. Roh JS, Teng AL, Rice JA et al Cervical Spine Research Society, editor (2004) Paper #16: Accurate pedicle screw placement using laser-guided fluoroscopy: The “Perfect Pedicle” Technique. Boston, MA. Cervical Spine Research Society, 16. p 69, 32nd Annual Meeting. C_Ped III

  39. Sakamoto T, Neo M, Nakamura T (2004) Transpedicular screw placement evaluated by axial computed tomography of the cervical pedicle. Spine 29(22):2510–2514

    Article  PubMed  Google Scholar 

  40. Schlenzka D, Laine T, Lund T (2000) Computer-assisted spine surgery: principles, technique, results and perspectives. Orthopade 29(7):658–669

    Article  PubMed  CAS  Google Scholar 

  41. Shin EK, Panjabi MM, Chen NC, Wang JL (2000) The anatomic variability of human cervical pedicles: considerations for transpedicular screw fixation in the middle and lower cervical spine. Eur Spine J 9(1):61–66

    Article  PubMed  CAS  Google Scholar 

  42. Stanescu S, Ebraheim NA, Yeasting R, Bailey AS, Jackson WT (1994) Morphometric evaluation of the cervico-thoracic junction. Practical considerations for posterior fixation of the spine. Spine 19(18):2082–2088

    Article  PubMed  CAS  Google Scholar 

  43. Sutterlin CE III, McAfee PC, Warden KE, Rey RM Jr, Farey ID (1988) A biomechanical evaluation of cervical spinal stabilization methods in a bovine model. Static and cyclical loading. Spine 13(7):795–802

    Article  PubMed  Google Scholar 

  44. Takahashi J, Shono Y, Nakamura I, Hirabayashi H et al (2006) Computer-assisted screw insertion for cervical disorders in rheumatoid arthritis. Eur Spine J 16(4):485–494. Epub 6 October 2006

    Google Scholar 

  45. Ugur HC, Attar A, Uz A, Tekdemir I et al (2000) Surgical anatomic evaluation of the cervical pedicle and adjacent neural structures. Neurosurgery 47(5):1162–1168

    Article  PubMed  CAS  Google Scholar 

  46. Xu R, Kang A, Ebraheim NA, Yeasting RA (1999) Anatomic relation between the cervical pedicle and the adjacent neural structures. Spine 24(5):451–454

    Article  PubMed  CAS  Google Scholar 

  47. Yusof MI, Ming LK, Abdullah MS, Yusof AH (2006) Computerized tomographic measurement of the cervical pedicles diameter in a Malaysian population and the feasibility for transpedicular fixation. Spine 31(8):E221–E224

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Implants were provided by Icotec AG, Altstaetten, Switzerland

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Reinhold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinhold, M., Bach, C., Audigé, L. et al. Comparison of two novel fluoroscopy-based stereotactic methods for cervical pedicle screw placement and review of the literature. Eur Spine J 17, 564–575 (2008). https://doi.org/10.1007/s00586-008-0584-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-008-0584-2

Keywords

Navigation