Skip to main content
Log in

Correlation of cervical endplate strength with CT measured subchondral bone density

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

An Erratum to this article was published on 02 October 2007

Abstract

Cervical interbody device subsidence can result in screw breakage, plate dislodgement, and/or kyphosis. Preoperative bone density measurement may be helpful in predicting the complications associated with anterior cervical surgery. This is especially important when a motion preserving device is implanted given the detrimental effect of subsidence on the postoperative segmental motion following disc replacement. To evaluate the structural properties of the cervical endplate and examine the correlation with CT measured trabecular bone density. Eight fresh human cadaver cervical spines (C2–T1) were CT scanned and the average trabecular bone densities of the vertebral bodies (C3–C7) were measured. Each endplate surface was biomechanically tested for regional yield load and stiffness using an indentation test method. Overall average density of the cervical vertebral body trabecular bone was 270 ± 74 mg/cm3. There was no significant difference between levels. The yield load and stiffness from the indentation test of the endplate averaged 139 ± 99 N and 156 ± 52 N/mm across all cervical levels, endplate surfaces, and regional locations. The posterior aspect of the endplate had significantly higher yield load and stiffness in comparison to the anterior aspect and the lateral aspect had significantly higher yield load in comparison to the midline aspect. There was a significant correlation between the average yield load and stiffness of the cervical endplate and the trabecular bone density on regression analysis. Although there are significant regional variations in the endplate structural properties, the average of the endplate yield loads and stiffnesses correlated with the trabecular bone density. Given the morbidity associated with subsidence of interbody devices, a reliable and predictive method of measuring endplate strength in the cervical spine is required. Bone density measures may be used preoperatively to assist in the prediction of the strength of the vertebral endplate. A threshold density measure has yet to be established where the probability of endplate fracture outweighs the benefit of anterior cervical procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amstutz HC, Sissons HA (1969) The structure of the vertebral spongiosa. J Bone Joint Surg Br 51:540–550

    PubMed  CAS  Google Scholar 

  2. Bergot C, Laval-Jeantet AM, Hutchinson K, Dautraix I, Caulin F, Genant HK (2001) A comparison of spinal quantitative computed tomography with dual energy X-ray absorptiometry in European women with vertebral and nonvertebral fractures. Calcif Tissue Int 68:74–82

    Article  PubMed  CAS  Google Scholar 

  3. Biggemann M, Hilweg D, Brinckmann P (1988) Prediction of the compressive strength of vertebral bodies of the lumbar spine by quantitative computed tomography. Skeletal Radiol 17:264–269

    Article  PubMed  CAS  Google Scholar 

  4. Biggemann M, Hilweg D, Seidel S, Horst M, Brinckmann P (1991) Risk of vertebral insufficiency fractures in relation to compressive strength predicted by quantitative computed tomography. Eur J Radiol 13:6–10

    Article  PubMed  CAS  Google Scholar 

  5. Bohlman HH, Emery SE, Goodfellow DB, Jones PK (1993) Robinson anterior cervical discectomy and arthrodesis for cervical radiculopathy. Long-term follow-up of one hundred and twenty-two patients. J Bone Joint Surg Am 75:1298–1307

    PubMed  CAS  Google Scholar 

  6. Brinckmann P, Biggemann M, Hilweg D (1989) Prediction of the compressive strength of human lumbar vertebrae. Spine 14:606–610

    Article  PubMed  CAS  Google Scholar 

  7. Brodke DS, Zdeblick TA (1992) Modified Smith–Robinson procedure for anterior cervical discectomy and fusion. Spine 17:S427–S430

    Article  PubMed  CAS  Google Scholar 

  8. Closkey RF, Parsons JR, Lee CK, Blacksin MF, Zimmerman MC (1993) Mechanics of interbody spinal fusion. Analysis of critical bone graft area. Spine 18:1011–1015

    Article  PubMed  CAS  Google Scholar 

  9. Ebbesen EN, Thomsen JS, Beck-Nielsen H, Nepper-Rasmussen HJ, Mosekilde L (1999) Lumbar vertebral body compressive strength evaluated by dual-energy X-ray absorptiometry, quantitative computed tomography, and ashing. Bone 25:713–724

    Article  PubMed  CAS  Google Scholar 

  10. Emery SE, Bolesta MJ, Banks MA, Jones PK (1994) Robinson anterior cervical fusion comparison of the standard and modified techniques. Spine 19:660–663

    Article  PubMed  CAS  Google Scholar 

  11. Formica CA, Nieves JW, Cosman F, Garrett P, Lindsay R (1998) Comparative assessment of bone mineral measurements using dual X-ray absorptiometry and peripheral quantitative computed tomography. Osteoporos Int 8:460–467

    Article  PubMed  CAS  Google Scholar 

  12. Grampp S, Jergas M, Lang P, Steiner E, Fuerst T, Gluer CC, Mathur A, Genant HK (1996) Quantitative CT assessment of the lumbar spine and radius in patients with osteoporosis. Am J Roentgenol 167:133–140

    CAS  Google Scholar 

  13. Grant JP, Oxland TR, Dvorak MF (2001) Mapping the structural properties of the lumbosacral vertebral endplates. Spine 26:889–896

    Article  PubMed  CAS  Google Scholar 

  14. Grant JP, Oxland TR, Dvorak MF, Fisher CG (2002) The effects of bone density and disc degeneration on the structural property distributions in the lower lumbar vertebral endplates. J Orthop Res 20:1115–1120

    Article  PubMed  CAS  Google Scholar 

  15. Grubb MR, Currier BL, Shih JS, Bonin V, Grabowski JJ, Chao EY (1998) Biomechanical evaluation of anterior cervical spine stabilization. Spine 23:886–892

    Article  PubMed  CAS  Google Scholar 

  16. Hasegawa K, Abe M, Washio T, Hara T (2001) An experimental study on the interface strength between titanium mesh cage and vertebra in reference to vertebral bone mineral density. Spine 26:957–963

    Article  PubMed  CAS  Google Scholar 

  17. Hollowell JP, Vollmer DG, Wilson CR, Pintar FA, Yoganandan N (1996) Biomechanical analysis of thoracolumbar interbody constructs. How important is the endplate? Spine 21:1032–1036

    Article  PubMed  CAS  Google Scholar 

  18. Keller TS, Hansson TH, Abram AC, Spengler DM, Panjabi MM (1989) Regional variations in the compressive properties of lumbar vertebral trabeculae. Effects of disc degeneration. Spine 14:1012–1019

    Article  PubMed  CAS  Google Scholar 

  19. Li JY, Zhu QA, Yuan L, Zhao WD, Lin LJ, Zhang MC, Huang WH (2003) Role of the biomechanical property of the endplate in anterior cervical fusion. Di Yi Jun Yi Da Xue Xue Bao 23:402–408

    PubMed  Google Scholar 

  20. Li JY, Zhao WD, Zhu QA, Yuan L, Li M, Lin LJ, Zhang MC (2004) [The effect of disc degeneration on the structural property distributions in the cervical vertebral endplates.]. Zhonghua Wai Ke Za Zhi 42:1330–1332

    PubMed  Google Scholar 

  21. Lim TH, Kwon H, Jeon CH, Kim JG, Sokolowski M, Natarajan R, An HS, Andersson GB (2001) Effect of endplate conditions and bone mineral density on the compressive strength of the graft-endplate interface in anterior cervical spine fusion. Spine 26:951–956

    Article  PubMed  CAS  Google Scholar 

  22. Lowe TG, Hashim S, Wilson LA, O’Brien MF, Smith DA, Diekmann MJ, Trommeter J (2004) A biomechanical study of regional endplate strength and cage morphology as it relates to structural interbody support. Spine 29:2389–2394

    Article  PubMed  Google Scholar 

  23. Macdonald RL, Fehlings MG, Tator CH, Lozano A, Fleming JR, Gentili F, Bernstein M, Wallace MC, Tasker RR (1997) Multilevel anterior cervical corpectomy and fibular allograft fusion for cervical myelopathy. J Neurosurg 86:990–997

    Article  PubMed  CAS  Google Scholar 

  24. Ochia RS, Tencer AF, Ching RP (2003) Effect of loading rate on endplate and vertebral body strength in human lumbar vertebrae. J Biomech 36:1875–1881

    Article  PubMed  Google Scholar 

  25. Oxland TR, Grant JP, Dvorak MF, Fisher CG (2003) Effects of endplate removal on the structural properties of the lower lumbar vertebral bodies. Spine 28:771–777

    Article  PubMed  Google Scholar 

  26. Pacifici R, Susman N, Carr PL, Birge SJ, Avioli LV (1987) Single and dual energy tomographic analysis of spinal trabecular bone: a comparative study in normal and osteoporotic women. J Clin Endocrinol Metab 64:209–214

    Article  PubMed  CAS  Google Scholar 

  27. Parkinson RJ, Durkin JL, Callaghan JP (2005) Estimating the compressive strength of the porcine cervical spine: an examination of the utility of DXA. Spine 30:E492–E498

    Article  PubMed  Google Scholar 

  28. Rapoff AJ, Conrad BP, Johnson WM, Cordista A, Rechtine GR (2003) Load sharing in Premier and Zephir anterior cervical plates. Spine 28:2648–2650; discussion 2651

    Article  PubMed  Google Scholar 

  29. Roberts S, McCall IW, Menage J, Haddaway MJ, Eisenstein SM (1997) Does the thickness of the vertebral subchondral bone reflect the composition of the intervertebral disc? Eur Spine J 6:385–389

    Article  PubMed  CAS  Google Scholar 

  30. Sasso RC, Ruggiero RA Jr, Reilly TM, Hall PV (2003) Early reconstruction failures after multilevel cervical corpectomy. Spine 28:140–142

    Article  PubMed  Google Scholar 

  31. Spivak JM, Chen D, Kummer FJ (1999) The effect of locking fixation screws on the stability of anterior cervical plating. Spine 24:334–338

    Article  PubMed  CAS  Google Scholar 

  32. Steffen T, Tsantrizos A, Aebi M (2000) Effect of implant design and endplate preparation on the compressive strength of interbody fusion constructs. Spine 25:1077–1084

    Article  PubMed  CAS  Google Scholar 

  33. Thickman D, Nodine C, Iddenden D (1990) Quantitative CT of the spine. Significance of intervertebral body variability. Invest Radiol 25:19–23

    Article  PubMed  CAS  Google Scholar 

  34. Truumees E, Demetropoulos CK, Yang KH, Herkowitz HN (2003) Failure of human cervical endplates: a cadaveric experimental model. Spine 28:2204–2208

    Article  PubMed  Google Scholar 

  35. Vaccaro AR, Falatyn SP, Scuderi GJ, Eismont FJ, McGuire RA, Singh K, Garfin SR (1998) Early failure of long segment anterior cervical plate fixation. J Spinal Disord 11:410–415

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Partial research funding for this study was provided by Synthes Spine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir H. Fayyazi.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00586-007-0505-9.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ordway, N.R., Lu, YM., Zhang, X. et al. Correlation of cervical endplate strength with CT measured subchondral bone density. Eur Spine J 16, 2104–2109 (2007). https://doi.org/10.1007/s00586-007-0482-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-007-0482-z

Keywords

Navigation