Skip to main content

Advertisement

Log in

Effect of short-term administration of methionine on the ovary and uterus in a rat

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

Methionine is necessary for development but overuse of it can not only cause growth retardation but also damage organs such as the liver and cardiovascular system. The purpose of this research was to determine the effect of short-term administration of methionine on the ovaries and uterus in a rat. Forty adult female rats were randomly allocated into four equal groups: each received 50, 100 or 200 mg/kg BW l-methionine in 0.5 mL normal saline or just 0.5 mL normal saline (control) intraperitoneally for 20 days. On day 21, all rats were euthanized and tissues were taken for histological evaluation. Also, plasma homocysteine (Hcy) level was assessed in all groups. No difference was observed between the ovaries in all treatment and control groups; however, in methionine-injected groups, some histopathological changes were observed in the uterus such as atrophy in endometrial glands and the presence of inflammatory cells in the endo- and myometrium. Histopathological findings showed uterine infiltration of inflammatory cells in the methionine-injected groups which increased with increasing injected methionine levels. Also, all treatment groups showed increasing homocysteine levels compared to controls. These results show short-term administration of methionine and its associated homocysteinaemia has no effect on the ovary and its follicular structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al-Zamely OY, Al-Nimer MS, Al-Muslih RK (2001) Detection the level of peroxynitrite and related antioxidant status in the serum of patients with acute myocardial infraction. Nation J Chem 4:625–637

    Google Scholar 

  • Anderson JO, Combs GF (1952) Effect of single amino acid excesses on glucose metabolism and chick growth, as influenced by the dietary amino acid balance. J Nutr 87:161–170

    Article  Google Scholar 

  • Barak AJ, Beckenhauer HC, Mailliard ME, Kharbanda KK, Tuma DJ (2003) Betaine lowers elevated S-adenosyl homocysteine levels in hepatocytes from ethanol-fed rats. J Nutr 133:2845–2848

    Article  CAS  PubMed  Google Scholar 

  • Bauchart-Thevret C, Stoll B, Burrin DG (2009) Intestinal metabolism of sulfur amino acids. Nutr Res Rev 22:175–187

    Article  CAS  PubMed  Google Scholar 

  • Baydas G, Koz ST, Tuzcu M, Nedzvetsky VS (2008) Melatonin prevents gestational hyperhomocysteinemia-associated alterations in neurobehavioral developments in rats. J Pineal Res 44:181–188

    Article  CAS  PubMed  Google Scholar 

  • Baydas G, Kutlu S, Naziroglu M, Canpolat S, Sandal S, Ozcan M, Kelestimur H (2003) Inhibitory effects of melatonin on neural lipid peroxidation induced by intracerebroventricularly administered homocysteine. J Pineal Res 34:36–39

    Article  CAS  PubMed  Google Scholar 

  • Baydas G, Reiter RJ, Akbulut M, Tuzcu M, Tamer S (2005) Melatonin inhibits neural apoptosis induced by homocysteine in hippocampus of rats via inhibition of cytochrome c translocation and caspase-3 activation and by regulating pro- and anti-apoptotic protein levels. Neuroscience 135:879–886

    Article  CAS  PubMed  Google Scholar 

  • Bellas RE, Harrington EO, Sheahan KL, Newton J, Marcus C, Rounds S (2002) FAK blunts adenosine-homocysteine-induced endothelial cell apoptosis: requirement for PI 3-kinase. Am J Physiol Lung Cell Mol Physiol 282:1135–1142

    Article  Google Scholar 

  • Benjamin DT, William SM, Yie-Hwa CG (2003) N-terminal methionine removal and methionine metabolism in saccharomyces cervisiae. J Cell Biochem 89:964–974

    Article  Google Scholar 

  • Berker B, Kaya C, Aytac R, Satıroglu H (2009) Homocysteine concentrations in follicular fluid are associated with poor oocyte and embryo qualities in polycystic ovary syndrome patients undergoing assisted reproduction. Hum Reprod 24:2293–2302

    Article  CAS  PubMed  Google Scholar 

  • Blaise SA, Nédélec E, Schroeder H, Alberto JM, Bossenmeyer-Pourié C, Guéant JL, Daval JL (2007) Gestational vitamin B deficiency leads to homocysteine associated brain apoptosis and alters neurobehavioral development in rats. Am J Pathol 170:667–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burrin DG, Stoll B (2007) Emerging aspects of gut sulfur amino acid metabolism. CurrOpinClinNutrMetab Care 10:63–68

    CAS  Google Scholar 

  • Coskun O, Ocakci A, Bayraktaroglu T, Kanter M (2004) Exercise training prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas. Tohoku J Exp Med 203:145–154

    Article  CAS  PubMed  Google Scholar 

  • Dalle-Donne I, Rossi R, Milzani A, Di Simplicio P, Colombo R (2001) The actin cytoskeleton response to oxidants: from small heat shock protein phosphorylation to changes in the redox state of actin itself. Free Radi Biol Med 31:1624–1632

    Article  CAS  Google Scholar 

  • Das S, Chattopadhyay RC, Ghosh S, Goswami SK, Chakravarty BN (2006) Reactive oxygen species level in follicular fluid-embryo quality marker in IVF. Hum Reprod 21:2403–2407

    Article  CAS  PubMed  Google Scholar 

  • Davis DA, Newcomb FM, Moskovitz J, Wingfield PT, Stahl SJ, Kaufman J, Fales HM, Levine RL, Yarchoan R (2000) HIV-2 protease is inactivated after oxidation at the dimer interface and activity can be partly restored with methionine solfoxide reductase. Biochem J 346:305–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferlazzo N, Condello S, Curro M, Parisi G, Ientile R, Caccamo D (2008) NFkappaB activation is associated with homocysteine-induced injury in Neuro2a cells. BMC Neurosci 7:9–62

    Google Scholar 

  • Finkelstein JD (1990) Methionine metabolism in mammals. J NutrBiochem 1:228–237

    CAS  Google Scholar 

  • Finkelstein JD (1998) The metabolism of homocysteine: pathways and regulation. Eur J Pediatr 157:40–44

    Article  Google Scholar 

  • Fukada S, Shimada Y, Morita T, Sugiyama K (2006) Suppression of methionine-induced hyperhomocysteinemia by glycine and serine in rats. Biosci Biotechnol Biochem 70:2403–2409

    Article  CAS  PubMed  Google Scholar 

  • Guzman M, Navarro M, Carnicer R, Sarria A, Acin S, Arnal C, Muneisa P, Surra J, Mainar J, Maeda N, Osada J (2006) Cystationine beta-synthase is essential for female reproduction function. HumMol Gen 15:3168–3176

    CAS  Google Scholar 

  • Halsted CH, Villanueva JA, Devlin AM, Niemela O, Parkkila S, Garrow TA et al (2002) Folate deficiency disturbs hepatic methionine metabolism and promotes liver injury in the ethanol-fed micropig. Proc Natl Acad Sci U S A 99:10072–10077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harper AE, Benevenga NJ, Wohlhueter RM (1970) Effects of ingestion of disproportionate amounts of amino acids. Physiol Rev 50(3):428–558

    Article  CAS  PubMed  Google Scholar 

  • Harrington EO, Smeglin A, Parks N, Newton J, Rounds S (2000) Adenosine induces endothelial apoptosis by activating protein tyrosine phosphatase: a possible role of p38alpha. Am J Physiol Lung Cell Mol Physiol 279:733–742

    Article  Google Scholar 

  • Ho PI, Ortiz D, Rogers E, Shea TB (2002) Multiple aspects of homocysteine neurotoxicity glutamate excitotoxicity, kinase hyperactivation and DNA damage. J Neurosci Res 70:694–702

    Article  CAS  PubMed  Google Scholar 

  • Kruman II, Culmsee C, Chan SL, Kruman Y, Guo Z, Penix L, Mattson MP (2000) Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci 20:6920–6926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusum KK, David DR, Mark EM, Gerri LS, Barak AJ, Harriet CB et al (2005) Role of elevated S-adenosyl homocysteine in rat hepatocyte apoptosis: protection by betaine. Biochem Pharmacol 70:1883–1890

    Article  Google Scholar 

  • Kuszczyk M, Gordon-Krajcer W, Lazarewicz JW (2009) Homocysteine-induced acute exitotoxicity in cerebellar granule cells in vitro is accompanied by PP2Amediated dephosphorilation of tau. Neurochem Int 55:174–180

    Article  CAS  PubMed  Google Scholar 

  • Lana SA, Goran QO, Yasin KA (2013) Effects of N-acetyl cysteine and uterus histological damage and oxidative stress in rats. Diyala J Med 4:20–32

    Google Scholar 

  • Lieber CS (2007) S-Adenosyl-l-methionine: its role in the treatment of liver disorders. Am J Clin Nutr 76(suppl):1183S–1187S

    Google Scholar 

  • Makhro AV, Mashkina AP, Solenaya OA, Trunova OA, Kozina LS, Arutyunian AV, Bulygina ER (2008) Prenatal hyperhomocysteinemia as a model of oxidative stress of the brain. Bull Exp Biol Med 146:33–35

    Article  CAS  PubMed  Google Scholar 

  • Martinov MV, Vitvitsky VM, Mosharov EV, Banerjee R, Ataullakhanov FI (2000) A substrate switch: a new mode of regulation in the methionine metabolic pathway. J TheorBiol 204:521–532

    CAS  Google Scholar 

  • Mujumdar VS, Aru GM, Tyagi SC (2001) Induction of oxidative stress by homocysteine impairs endothelial function. J Cell Biochem 82:491–500

    Article  CAS  PubMed  Google Scholar 

  • Nazem MN, Teymouri M, Jahantigh M (2016) The histomorphometric and histopathologic effect of methionine on the epidermis and dermis layers of skin in rat. Comp Clin Pathol 25:699–704

    Article  CAS  Google Scholar 

  • Nelen WL (2001) Hyperhomocysteinemia and human reproduction. Clin Chem Lab Med 39:758–763

    Article  CAS  PubMed  Google Scholar 

  • Peng YS, Evenson JK (1979) Alleviation of methionine toxicity in young male rats fed high levels of retinol. J Nutr 109:281–290

    Article  CAS  PubMed  Google Scholar 

  • Poddar R, Sivasubramanian N, DiBello P, Robinson K, Jacobsen DW (2001) Homocysteine induces expression and secretion of monocyte chemoattractant protein-1 and interleukin-8 in human aortic endothelial cells: implications for vascular disease. Circulation 103:2717–2723

    Article  CAS  PubMed  Google Scholar 

  • Riedijk MA, Stoll B, Chacko S, Schierbeek H, Sunehag AL, Van Goudoever JB, Burrin DG (2007) Methionine transmethylation and transsulfuration in the piglet gastrointestinal tract. ProcNatlAcadSci 104:3408–3413

    Article  CAS  Google Scholar 

  • Sakino TE, Rih KA, Michiko AO, Yasuko KA, Takeshi KA, Rysaei SI (2006) Screening of toxicity biomarkers for methionine excess in rats. Am J Nutr 136:1716–1721

    Article  Google Scholar 

  • Selhub J, Jacques PF, Wilson PWF, Rush D, Rosenberg IH (1993) Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. J Am Med Assoc 270:2693–2698

    Article  CAS  Google Scholar 

  • Sema TK, Nevhayat TG, Nevgul D, Viktor SN, Ebru E, Giyasettin B (2010) Effects of maternal hyperhomocysteinemia induced by methionine intake on oxidative stress and apoptosis in pup rat brain. Int J Devl Neuroscience 28:325–329

    Article  Google Scholar 

  • Song Z, Zhou Z, Uriarte S, Wang L, Kang YJ, Chen T et al (2004) S-Adenosylhomocysteine sensitizes to TNF-alpha hepatotoxicity in mice and liver cells: a possible etiological factor in alcoholic liver disease. Hepatology 40:989–997

    Article  PubMed  Google Scholar 

  • Soudani N, Ben Amara I, Troudi A, Hakim A, Bouaziz H, Ayadi Makni F, Zeghal KM, Zeghal N (2011) Oxidative damage induced by chromium (VI) in rat erythrocytes: protective effect of selenium. J PhysiolBiochem 67:577–588

    CAS  Google Scholar 

  • Steegers-Theunissen RP, Boers GH, Blom HJ, Trijbels FJ, Eskes TK (1992) Hyperhomocysteinaemia and recurrent spontaneous abortion or abruptio placentace. Lancet 339:1122–1123

    Article  CAS  PubMed  Google Scholar 

  • Steele RD, Barber TA, Lalich J, Benevenga NJ (1979) Effects of dietary 3-methylthiopropionate on metabolism, growth and hematopoiesis in the rat. J Nutr 109:1739–1751

    Article  CAS  PubMed  Google Scholar 

  • Stipanuk MH (2004) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 24:537–577

    Article  Google Scholar 

  • Taravati A, Asri S, Safi S, Madani R, Mortazavi P (2013) Histopathology and biochemical assessment of excess high dose of methionine on liver, heart and kidney tissues in rabbit. Scholars Research Library 4:167–173

    CAS  Google Scholar 

  • Tyagi N, Sedoris KC, Steed M, Ovechkin AV, Moshal KS, Tyagi SC (2005) Mechanisms of homocysteine-induced oxidative stress. Am J Physiol Heart Circ Physiol 289:2649–2656

    Article  Google Scholar 

  • Upchurch GR Jr, Welch GN, Fabian AJ, Freedman JE, Johnson JL, Keaney JF Jr, Loscalzo J (1997) Homocyst(e)ine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J Biol Chem 272:17012–17017

    Article  CAS  PubMed  Google Scholar 

  • Ursini F, Pipicelli G (2009) Nutritional supplementation for osteoarthritis: alternative and complementary therapies. Altern Complement Ther 15:173–177

    Article  Google Scholar 

  • Vogt W (1995) Oxidation of methionyl residues in proteins: tools, targets, and reversal. Free Radic Biol Med 18:93–106

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Mao JM, Wang X, Zhang FC (2004) Effect of homocysteine on plaque formation and oxidative stress in patients with acute coronary syndromes. Chin Med J 117:1650–1654

    CAS  PubMed  Google Scholar 

  • Wang G, Siow YL, O K (2001) Homocysteine induces monocyte chemoattractant protein-1 expression by activating NF-kB in THP-1 macrophages. Am J Physiol Heart CircPhysiol 280:2840–2847

    Article  Google Scholar 

  • Wang JY, Shum AY, Ho YJ, Wang JY (2003) Oxidative neurotoxicity in rat cerebral cortex neurons synergistic effects of H2O2 and NO on apoptosis involving activation of p38 mitogen-activated protein kinase and caspase-3. J Neurosci Res 72:508–519

    Article  CAS  PubMed  Google Scholar 

  • Weiss N (2005) Mechanisms of increased vascular oxidant stress in hyperhomocysteinemia and its impact on endothelial function. Curr Drug Metab 6:27–36

    Article  CAS  PubMed  Google Scholar 

  • White AR, Huang X, Jobling MF, Barrow CJ, Beyreuther K, Masters CL, Bush AL, Cappai R (2001) Homocysteine potentiates copper- and amyloid beta peptide-mediated toxicity in primary neuronal cultures possible risk factors in the Alzheimer’s-type neurodegenerative pathways. J Neurochem 76:1509–1520

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Neville R, Finkel T (2000) Homocysteine accelerates endothelial cell senescence. FEBS Lett 470:20–24

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Ma J, Xia M, Zhu H, Ling W (2004) Mild hyperhomocysteinemia induced by feeding rats diets rich in methionine or deficient in folate promotes early atherosclerotic inflammatory processes. J Nutr 134:825–830

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Kapoian T, Shepard M, Lianos EA (2002) Adenosine-induced apoptosis in glomerular mesangial cells. Kidney Int 61:1276–1285

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms. Sheikh Shoaei for the preparation of the histopathologic slides.

Author information

Authors and Affiliations

Authors

Ethics declarations

All procedures involving the experimental use of animals were approved by the Animal Ethics Committee, a branch of the Research Council of the Veterinary School in Shahid Bahonar University, Kerman Province, Iran, and administered by the National Animal Ethics Advisory Committee.

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

Central research office of Shahid Bahonar University of Kerman supported the expenses of this study under grant number 1393/11.

Ethical approval

All methods used in this research were in agreement with the ethical standards of the School of Veterinary Medicine of Shahid Bahonar University of Kerman, Iran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazem, M.N., Kheirandish, R., Babaei, H. et al. Effect of short-term administration of methionine on the ovary and uterus in a rat. Comp Clin Pathol 26, 867–873 (2017). https://doi.org/10.1007/s00580-017-2458-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-017-2458-7

Keywords

Navigation