Skip to main content
Log in

Cholinesterase’s activities in cows supplemented with selenium, copper, phosphorus, potassium, and magnesium intramuscularly during the transition period

Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

The cholinesterases are enzymes involved in severe biological functions in mammals; however, it was not yet study in dairy cows during the transition period. In this period, the animals have high energetic demands for milk production, and the supplementation with mineral can be considered an important approach to fulfill this demand. Thus, the aim of this study was to evaluate the activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in dairy cows supplemented with minerals based on selenium, copper, phosphorus, potassium, and magnesium intramuscularly in the transition period. The mineral supplementation in cows stimulates the increase of AChE postpartum (on days 2 and 7 postpartum, p < 0.05), as well as stimulates the BChE before and after the partum (on day 5 prepartum, and day 2 and 7 postpartum, p < 0.05). Calves of dairy cows supplemented showed low AChE activity when compared to calves of non-supplemented dairy cows. Thus, the supplementation with mineral did influence participates indirectly or directly especially in the modulation of cholinesterases that may have anti-inflammatory effect and contribute to improve on hematopoiesis and neurotransmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Batistel F, Osorio JS, Ferrari A, Trevisi E, Socha MT, Loor JJ (2016) Immunometabolic status during the peripartum period is enhanced with supplemented Zn, Mn and Cu from amino acid complexes and Co from Co glucoheptonate. PLoS One 11(5):e0155804. doi:10.1371/journal.pone.0155804

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown DH, Smith WE, Teape JW, Lewis AJ (1980) Antiinflammatory effects of some copper complexes. J Med Chem 23:729–734

    Article  CAS  PubMed  Google Scholar 

  • Chatonnet A, Lockridge O (1989) Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem J 260:625–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortinhas CS, Freitas Júnior JE, Naves JR, Porcionato MAF, Silva LFP, Rennó FP, Santos MV (2012) Organic and inorganic sources of zinc, copper and selenium in diets for dairy cows: intake, blood metabolic profile, milk yield and composition. R Bras Zootec 41:1477–1483

    Article  Google Scholar 

  • Das UN (2012) Acetylcholinesterase and butyrylcholinesterase as markers of low-grade systemic inflammation. Anna Hepatol 11:409–411

    CAS  Google Scholar 

  • Das UN (2007) Acetylcholinesterase and butyrylcholinesterase as possible markers of low-grade systemic inflammation. Med Sci Monit 13:214–221

    Google Scholar 

  • Darvesh S, Hopkins DA, Geula C (2003) Neurobiology of butyrylcholinesterases. Nat Rev Neurosci 17:131–138

  • Ellman GL, Coutney KO, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Fakhri-Bafhni MS, Ghasemi-Niri SF, Mostafalou S, Navaei-Nigjeh M, Baeeri M, Mohammadirad A, Abdollahi M (2016) Protective effect of selenium-based medicines on toxicity of three common organophosphorus compounds in human erythrocytes in vitro. Cell Journal 17:740–747

    Google Scholar 

  • Firidin G, Kargin F, Firat O, Çogun HY, Firat O, Firidin B, Yuzereroglu TA (2015) Antioxidant defence systems, lipid peroxidation and acetylcholinesterase activity of Oreochromis niloticus exposed to mercury and mercury + selenium. Fresenius Environ Bull 24:1958–1965

    CAS  Google Scholar 

  • García J, Cuesta M, Pedroso R, Rodríguez J, Gutiérrez M, Mollineda A, Figueredo J, Quinones R (2007) Suplementación parenteral de cobre en vacas gestantes: efecto sobre postparto y terneiros. Revista Mvz, Córdoba 12:985–995

    Google Scholar 

  • Gomes AM, Koszuosky R (2005) Evidências atuais do impacto terapêutico dos inibidores da acetilcolinesterase no transtorno cognitivo leve e na demência vascular. Rev Psiquiatra do Rio Grande do Sul 27:197–205

    Article  Google Scholar 

  • Kaplay SS (1976) Acetylcholinesterase and butyrylcholinesterase of developing human brain. Biol Neonate 28:65–73

    Article  CAS  PubMed  Google Scholar 

  • Lemberg A, Macchi MC (1981) Usefulness of serum pseudocholinesterase isoenzymes in acute and chronic liver diseases and neoplasms (experimental and clinical studies). Acta Gastroenterol Latinoam 11:125–132

    CAS  PubMed  Google Scholar 

  • Li B, Stribley JA, Ticu A, Xie X, Schopfer LM, Hammond P, Brimijoin S, Hinrichs SH, Lockridge O (2000) Abundant tissue butyrylcholinesterase and its possible function in the acetylcholinesterase knockout mouse. J Neurochem 75:1320–1331

    Article  CAS  PubMed  Google Scholar 

  • Rinaldi M, Moroni P, Paape MJ, Bannermann DD (2008) Differential alterations in the ability of bovine neutrophils to generate extracellular and intracellular reactive oxygen species during the peripartum period. Vet J 178:208–213

    Article  CAS  PubMed  Google Scholar 

  • Roche JR, Friggens NC, Kay JK, Fisher MW, Stafford KJ, Berry DP (2009) Invited review: body condition score and its association with dairy cow productivity, health, and welfare. J Dairy Sci 92:5769–5801

    Article  CAS  PubMed  Google Scholar 

  • Soldá NM, Glombowsky P, Campigotto G, Favero JF, Baretta D, Da Silva AS (2016) Injectable mineral supplementation to transition period dairy cows and its effects on animal health. Comp Clin Pathol. doi:10.1007/s00580-016-2378-y

    Google Scholar 

  • Tharwat M, Takamizawa A, Hosaka YZ, Endoh D, Oikawa S (2012) Hepatocyte apoptosis in dairy cattle during the transition period. Can J Vet Res 76:241–247

    PubMed  PubMed Central  Google Scholar 

  • Ventura ALM, Abreu PA, Freitas RCC, Sathler PC, Loureiro N, Castro HC (2010) Sistema colinérgico: revisitando receptores, regulação e a relação com a doença de Alzheimer, esquizofrenia, epilepsia e tabagismo. Rev Psiq Clin 37:66–72

    Article  Google Scholar 

  • Winck CA, Neto AT (2009) Diagnóstico da adequação de propriedades leiteiras em santa catarina às normas brasileiras de qualidade do leite. Rev Ciências Agroveterinárias Lages 8:164–172

    Google Scholar 

  • Worek F, Mast U, Kiderlen D (1999) Improved determination of acetylcholinestrase activity in human whole blood. Clin Chim Acta 288:73–90

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Liu X, Brenner DA, Kisseleva T (2015) Novel perspectives on the origins of the hepatocyte myofibroblasts. Cell Health and Cytoskeleton 7:111–119

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandro Schafer da Silva.

Ethics declarations

The present study was approved by the Ethics Committee for Use of Animals (CEUA) of Universidade do Estado de Santa Catarina, under protocol number 6084160216.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glombowsky, P., Soldá, N.M., Campigotto, G. et al. Cholinesterase’s activities in cows supplemented with selenium, copper, phosphorus, potassium, and magnesium intramuscularly during the transition period. Comp Clin Pathol 26, 575–579 (2017). https://doi.org/10.1007/s00580-017-2423-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-017-2423-5

Keywords

Navigation