Skip to main content

Advertisement

Log in

Oxidative stress and antioxidant enzyme activities in patients with Hashimoto’s thyroiditis

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

We investigated the parameters of oxidative stress in 71 Hashimoto’s thyroiditis patients. They were divided into three sub-groups according to the thyroid function: group I—euthyroid subjects; group II—hypothyroid subjects; and group III—subjects treated with Levothyroxin. Thirty healthy subjects were studied as controls. The level of lipid peroxidation (malondialdehyde, MDA) in the plasma and the antioxidant defences such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) activities in erythrocytes were measured. Concentrations of MDA and SOD activity were not different in sub-groups of patients and controls. CAT activity was significantly lower in group II in comparison with both controls (p = 0.01) and group III (p = 0.02) as well as in group I compared to the controls (p = 0.04). Activity of GPX in erythrocytes in hypothyroidism was significantly higher compared to controls (p = 0.02). GPX activity in both groups I and III tended to be lower in comparison with controls. Our results indicate a deficiency of cellular antioxidative defense in Hashimoto’s thyroiditis patients in all stages of disease. Accordingly, we suppose that the supplementation with antioxidants from an early stage of the disease, in addition to thyroid hormone replacement, may have a positive benefit in the treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAT:

catalase

FT4:

free thyroxine

GPX:

glutathione peroxidase

HDL-C:

HDL-cholesterol

H2O2 :

hydrogen peroxide

LDL-C:

LDL-cholesterol

LT4:

Levothyroxin

MDA:

malondialdehyde

ROS:

reactive oxygen species

SOD:

superoxide dismutase

TC:

total cholesterol

TG:

triglyceride

Tg Ab:

anti-thyroglobulin antibodies

TPO Ab:

anti-thyroid peroxidase antibodies

TSH:

thyroid-stimulating hormone

References

  • Aksoy DY, Kerimoglu U, Okur H, Canpinar H, Karaagauglu E, Yetgin S et al (2005) Effects of prophylactic thyroid hormone replacement in euthyroid Hashimoto’s thyroiditis. Endocr J 52:337–343

    Article  PubMed  CAS  Google Scholar 

  • Alvarado C, Alvarez P, Jimenez L, De la Fuente M (2006) Oxidative stress in leukocytes from young prematurely aging mice is reversed by supplementation with biscuits rich in antioxidants. Dev Comp Immunol 30:1168–1180

    Article  PubMed  CAS  Google Scholar 

  • Amino N, Hagan SR, Yamada N, Refetoff HS (1976) Measurement of circulating thyroid microsomal antibodies by the tanned red cell haemagglutination technique: its usefulness in the diagnosis of autoimmune thyroid disease. Clin Endocrinol 5:115–125

    CAS  Google Scholar 

  • Beers R, Sizer T (1952) Spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–138

    PubMed  CAS  Google Scholar 

  • Björkman U, Ekholm R (1995) Hydrogen peroxide degradation and glutathione peroxidase activity in cultures of thyroid cells. Mol Cell Endocrinol 111:99–107

    Article  PubMed  Google Scholar 

  • Cadet J, Delatour T, Douki T, Gasparutto D, Pouget JP, Ravanat JL et al (1999) Hydroxyl radicals and DNA base damage. Mutat Res 424:9–21

    PubMed  CAS  Google Scholar 

  • Das K, Chainy GB (2001) Modulation of rat liver mitochondrial antioxidant defense system by thyroid hormone. Biochim Biophys Acta 27:1–13

    Google Scholar 

  • Davies TF, Amino N (1993) A new classification for human autoimmune thyroid disease. Thyroid 3:331–333

    Article  PubMed  CAS  Google Scholar 

  • Dayan CM, Daniels GH (1996) Chronic autoimmune thyroiditis. N Engl J Med 335:99–107

    Article  PubMed  CAS  Google Scholar 

  • Demelash A, Kalsson J-O, Nilsson M, Björkman US (2004) Selenium has a protective role in caspase-3-dependent apoptosis induced by H2O2 in primary cultured pig thyrocytes. Eur J Endocrinol 150:841–849

    Article  PubMed  CAS  Google Scholar 

  • Duntas LH, Mantzou E, Koutras DA (2003) Effects of a six month treatment with selenomethionine in patients with autoimmune thyroiditis. Eur J Endocrinol 148:389–393

    Article  PubMed  CAS  Google Scholar 

  • Fayadat L, Niccoli-Sire P, Lanet J, Franc J-L (1999) Role of heme in intracellular trafficking of thyroperoxidase and involvement of H2O2 generated at the apical surface of thyroid cells in autocatalytic covalent heme binding. J Biol Chem 274:10533–10558

    Article  PubMed  CAS  Google Scholar 

  • Gamaley IA, Klyubin IV (1999) Roles of reactive oxygen species: signaling and regulation of cellular functions. Intern Rev Cytol 188:203–255

    CAS  Google Scholar 

  • Gärtner R, Gasnier BCH, Dietrich W, Krebs B, Angstwurm MWA (2002) Selenium supplementation in patients with autoimmune thyroiditis decrease thyroid peroxidase antibodies concentrations. J Clin Endocrinol Metab 87:1687–1691

    Article  PubMed  Google Scholar 

  • Gerenova J, Gadjeva V (2006) Influence of methimazole treatment on parameters of oxidative stress in patients with Graves’ disease. Comp Clin Pathol 15:49–54

    Article  Google Scholar 

  • Hammond LJ, Lowdell MW, Cerrano PG, Goode AW, Bottazzo GF, Mirakian R (1997) Analysis of apoptosis in relation to tissue destruction associated with Hashimoto’s autoimmune thyroiditis. J Pathol 182:138–144

    Article  PubMed  CAS  Google Scholar 

  • Hampton MB, Orrenius S (1997) Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Lett 414:552–556

    Article  PubMed  CAS  Google Scholar 

  • Hayashi N, Tamaki N, Konishi J et al (1986) Sonography of Hashimoto’s thyroiditis. J Clin Ultrasound 14:123–126

    Article  PubMed  CAS  Google Scholar 

  • Howie AF, Arthur JR, Nicol F, Walker SW, Beech SG, Beckett GJ (1997) Identification of a 57-kilodalton selenoprotein in human thyrocytes as thioredoxin reductase and evidence that its expression is regulated through the calcium-phosphoinositol signaling. J Clin Endocrinol Metab 83:2052–2058

    Article  Google Scholar 

  • Komosinska-Vassev K, Olczyk K, Kucharz EJ, Marcisz C, Winsz-Szczotka K, Kotulska A (2000) Free radical activity and antioxidant defense mechanisms in patients with hyperthyroidism due to Graves’ disease during therapy. Clin Chim Acta 300:107–117

    Article  PubMed  CAS  Google Scholar 

  • Kotani T, Aratake Y, Hirai K, Fukazawa Y, Sato H, Ohtaki S (1995) Apoptosis in thyroid tissue from patients with Hashimoto’s thyroiditis. Autoimmunity 20:231–236

    PubMed  CAS  Google Scholar 

  • Kraiem Z (1998) The measurement of antithyroid autoantibodies in the diagnosis and management of thyroid autoimmune disease. Clin Rev Allergy Immunol 16:219–225

    PubMed  CAS  Google Scholar 

  • Mahoney JJ, Vreman HJ, Stevenson DK, Van Kessel AL (1993) Measurement of carboxyhemoglobin and total hemoglobin by five specialized spectrophotometers (CO-oximeters) in comparison with reference methods. Clin Chem 39:1693–1700

    PubMed  CAS  Google Scholar 

  • Nunez J, Pommier J (1982) Formation of thyroid hormones. Vitam Horm 39:175–229

    Article  PubMed  CAS  Google Scholar 

  • Okayasu I, Saegusa M, Fujiwara M, Hara Y, Rose NR (1995) Enhanced cellular proliferative activity and cell death in chronic thyroiditis and thyroid papillary carcinoma. J Cancer Res Clin Oncol 121:746–752

    Article  PubMed  CAS  Google Scholar 

  • Oziol L, Faure P, Vergely C, Rochette L, Artur Y, Chomard P (2001) In vitro free radical scavenging capacity of thyroid hormones and structural analogues. J Endocrinol 170:197–206

    Article  PubMed  CAS  Google Scholar 

  • Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–170

    PubMed  CAS  Google Scholar 

  • Plaser ZA, Cushman LL, Jonson BC (1966) Estimation of product of lipid peroxidation (Malonyl Dialdehyde) in biochemical systems. Anal Biochem 16:359–364

    Article  Google Scholar 

  • Resch U, Helsel G, Tatzber F, Sinzinger H (2002) Antioxidant status in thyroid disfunction. Clin Chem Lab Med 40:1132–1134

    Article  PubMed  CAS  Google Scholar 

  • Rhee SG (1999) Redox signaling: hydrogen peroxide as intracellular messenger. Exp Mol Med 31:53–59

    PubMed  CAS  Google Scholar 

  • Riou C, Remy C, Rabilloud R, Rousset B, Fonlupt P (1998) H2O2 induces apoptoses of pig thyrocytes in culture. J Endocrinol 156:315–322

    Article  PubMed  CAS  Google Scholar 

  • Sadani GR, Nadkarni GD (1996) Role of tissue antioxidant defense in thyroid cancers. Cancer Lett 109:231–235

    Article  PubMed  CAS  Google Scholar 

  • Sugawara M, Kita T, Lee ED, Takamatsu J, Hagen JA, Kuma K et al (1998) Deficiency of thyroid superoxide dismutase in endemic goiter tissue. J Clin Endocrinol Metab 67:1156–1161

    Article  Google Scholar 

  • Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34:497–500

    PubMed  CAS  Google Scholar 

  • Tanimoto C, Hirakawa S, Kawasaki H, Hayakawa N, Ota Z (1995) Apoptosis in thyroid diseases: a histochemical study. Endocr J 42:193–201

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julieta Gerenova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerenova, J., Gadjeva, V. Oxidative stress and antioxidant enzyme activities in patients with Hashimoto’s thyroiditis. Comp Clin Pathol 16, 259–264 (2007). https://doi.org/10.1007/s00580-007-0689-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-007-0689-8

Keywords

Navigation