Skip to main content
Log in

High-order filtered scheme for front propagation problems

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

In this work we develop a specific application of the scheme proposed and analyzed in [1] to front propagation problems. The approach is based on the level-set method which leads in the isotropic case to a classical evolutive first order Hamilton- Jacobi equation.We will apply to this equation high-order “filtered schemes”, for these schemes the strong monotonicity property will not be satisfied. However, a weak є-monotonicity property applies and this is enough to obtain a convergence result and a precise error estimate. In the last section we will present several examples where we solve front propagation problems by filtered scheme in two and three dimensions showing the accuracy of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Bokanowski, M. Falcone and S. Sahu. An efficient filtered scheme for some first order time-dependentHamilton-Jacobi equations. SIAMJournal on Scientific Computing, 38(1) (2016), A171–A195.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Osher and J. A. Sethian. Fronts propagation with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 79 (1988), 12–49.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Osher and F. Ronald. Level set method and dynamic implicit surfaces, volume 153. Applied mathematical sciences, Springer (2003).

    Book  MATH  Google Scholar 

  4. J. A. Sethian. Level set method evolving in geometry, fluid mechanics, computer vision, and materials science, volume 3. Cambridge monographs on applied and computational mathematics, Cambridge university press (1996).

    MATH  Google Scholar 

  5. M. Falcone and R. Ferretti. Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations. SIAM-Society for Industrial and Applied Mathematics, Philadelphia (2014).

    Google Scholar 

  6. M. G. Crandall and P. L. Lions. Two approximations of solutions of Hamilton- Jacobi equations. Comput. Methods Appl. Mech. Engrg., 195 (1984), 1344–1386.

    MathSciNet  MATH  Google Scholar 

  7. S. Osher and C.-W. Shu. High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal., 4 (1991), 907–922.

    Article  MathSciNet  MATH  Google Scholar 

  8. O. Bokanowski, Y. Cheng and C-W Shu. A discontinuous galerkin scheme for front propagation with obstacle. Numer. Math., 126(2) (2013a), 1–31.

    MathSciNet  MATH  Google Scholar 

  9. O. Bokanowski, E. Cristiani and H. Zidani. An efficient data structure and accurate scheme to solve front propagation problems. J. Sci. Comput., 42(2) (2010), 251–273.

    Article  MathSciNet  MATH  Google Scholar 

  10. O. Bokanowski, J. Garcke, M. Griebel and I. Klompmaker. An adaptive sparse grid semi-lagrangian scheme for first order Hamilton-Jacobi-Bellman equations. J. Sci. Comput., 55(3) (2013b), 575–605.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Ferretti. Convergence of semi-lagrangian approximations to convex Hamilton- Jacobi equations under (very) large courant numbers. SIAM J. Num. Anal., 40 (2003), 2240–2253.

    Article  MathSciNet  MATH  Google Scholar 

  12. B. D. Froese and A. M. Oberman. Convergent filtered schemes for the Monge- Ampre partial differential equation. SIAM J. Numer. Anal., 51 (2013), 423–444.

    Article  MathSciNet  MATH  Google Scholar 

  13. O. Bokanowski, F. Falcone, R. Ferretti, L. Grüne, D. Kalise and H. Zidani. Value iteration convergence of -monotone schemes for stationary Hamilton-Jacobi equations. DCDS, (2014).

  14. M. Bardi and I. Capuzzo-Dolcetta. Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Systems and Control. Foundations and Applications. Birkhauser, Boston (1997).

    Google Scholar 

  15. M. Falcone. The minimum time problem and its applications to front propagation, in: A. Visintin and G. Buttazzo (eds) “Motion by mean curvature and related topics”, (1994).

    Google Scholar 

  16. M. Bardi. A boundary value problem for the minimum time function. SIAM J. Control Optim., 27 (1989), 776–785.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Falcone, T. Giorgi and P. Loreti. Level set of viscosity solutions: some applications to front and rendez-vous problem. SIAM J. Appl. Math., 54(5) (1994), 1335–1354.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. M. Oberman and T. Salvador. Filtered schemes for Hamilton-Jacobi equations: a simple construction of convergent accurate difference schemes. J. Comput. Phys., 284 (2015), 367–388. ISSN 0021-9991. doi: 10. 1016/j. jcp. 2014. 12. 039. URL http://dx. doi. org/10. 1016/j. jcp. 2014. 12. 039.

    Article  MathSciNet  Google Scholar 

  19. S. Gottlieb and C-W Shu. Total variation diminishing Runge-Kutta schemes. Math. Comp., 67(221) (1998), 73–85. ISSN 0025-5718. doi: 10. 1090/S0025- 5718-98-00913-2. URL http://dx. doi. org/10. 1090/S0025-5718-98-00913-2.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smita Sahu.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, S. High-order filtered scheme for front propagation problems. Bull Braz Math Soc, New Series 47, 727–744 (2016). https://doi.org/10.1007/s00574-016-0181-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-016-0181-7

Keywords

Mathematical subject classification

Navigation