Skip to main content
Log in

Taxi drivers: the role of animals in transporting mycorrhizal fungi

  • Review
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Dispersal of mycorrhizal fungi via animals and the importance for the interacting partners’ life history as well as for ecosystems is an understudied topic. In this review, we describe the available evidence and the most important knowledge gaps and finally suggest ways to gain the missing information. So far, 33 articles have been published proving a successful transfer of mycorrhizal propagules by animals. The vast majority of research on invertebrates was focused on arbuscular mycorrhizal (AM) fungi, whereas papers on vertebrates (mainly rodents and artiodactyls) equally addressed ectomycorrhizal (ECM) and AM fungi. Effective dispersal has been mostly shown by the successful inoculation of bait plants and less commonly by spore staining or germination tests. Based on the available data and general knowledge on animal lifestyles, collembolans and oribatid mites may be important in transporting ECM fungal propagules by ectozoochory, whereas earthworms, isopods, and millipedes could mainly transfer AM fungal spores in their gut systems. ECM fungal distribution may be affected by mycophagous dipterans and their hymenopteran parasitoids, while slugs, snails, and beetles could transport both mycorrhizal groups. Vertebrates feeding on fruit bodies were shown to disperse mainly ECM fungi, while AM fungi are transported mostly accidentally by herbivores. The important knowledge gaps include insufficient information on dispersal of fungal propagules other than spores, the role of invertebrates in the dispersal of mycorrhizal fungi, the way in which propagules pass through food webs, and the spatial distances reached by different dispersal mechanisms both horizontally and vertically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen MF (1987) Re-establishment of mycorrhizas on Mount St Helens: migration vectors. T Brit Mycol Soc 88:413–417

    Google Scholar 

  • Allen MF, MacMahon JA (1988) Direct va mycorrhizal inoculation of colonizing plants by pocket gophers (Thomomys talpoides) on Mount St. Helens. Mycologia 80(2):754–756

    Google Scholar 

  • Allen MF (1988) Re-establishment of mycorrhizae following severe disturbance: comparative patch dynamics of a shrub desert and a subalpine volcano. P Roy Soc Edinb B 94:63–71

    Google Scholar 

  • Allen MF, Allen EB, Dahm CN, Edwards FS (1993) Preservation of biological diversity in mycorrhizal fungi: importance and human impacts. In: Sundnes G (ed) International symposium on human impacts on self-recruiting populations. The Royal Norwegian Academy of Sciences, Trondheim, pp 81–108

    Google Scholar 

  • Allen MF, Klironomos JN, Harney S (1997) The epidemiology of mycorrhizal fungi during succession. In: Carroll G, Tudzynski P (eds), The Mycota vol VB. pp 169–183

  • Ambarish CN, Sridhar KR (2014) Do the giant pill-millipedes (Arthrosphaera: Sphaerotheriida) disseminate arbuscular mycorrhizal spores in the Western Ghats? Symbiosis 64:91–95

    Google Scholar 

  • Anslan S, Bahram M, Tedersoo L (2016) Temporal changes in fungal communities associated with guts and appendages of Collembola as based on culturing and high-throughput sequencing. Soil Biol Biochem 96:152–159

    CAS  Google Scholar 

  • Ashkannejhad S, Horton TR (2006) Ectomycorrhizal ecology under primary succession on coastal sand dunes: interactions involving Pinus contorta, suilloid fungi and deer. New Phytol 169(2):345–354

    PubMed  Google Scholar 

  • Avis PG, Charvat I (2005) The response of ectomycorrhizal fungal inoculum to long-term increases in nitrogen supply. Mycologia 97(2):329–337

    PubMed  Google Scholar 

  • Barker GM, Efford MG (2004) Predatory gastropods as natural enemies of terrestrial gastropods and other invertebrates. Natural enemies of terrestrial molluscs. CABI Publishing, Wallingford

    Google Scholar 

  • Barth RH, Broshears RE (1982) The invertebrate world. Saunders College Publishing, Philadelphia

    Google Scholar 

  • Beever RE, Lebel T (2014) Truffles of New Zealand: a discussion of bird dispersal characteristics of fruit bodies. Auck Bot Soc 69(2):170–178

    Google Scholar 

  • Bengtsson G, Hedlund K, Rundgren S (1994) Food- and density-dependent dispersal: evidence from a soil collembolan. J Anim Ecol 63:513–520

    Google Scholar 

  • Boch S, Prati D, Werth S, Rüetschi J, Fischer M (2011) Lichen endozoochory by snails. PLoS One 6(4):e18770. https://doi.org/10.1371/journal.pone.0018770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonfante-Fasolo P, Vian B (1984) Wall texture in the spore of a vesicular-arbuscular mycorrhizal fungus. Protoplasma 120(1–2):51–60

    Google Scholar 

  • Bougher NL, Courtenay J, Danks A, Tommerup IC (1998) Fungi as a key component of Australia’s most critically endangered mammal: Gilbert’s potoroos (Potorous gilbertii). In: Ahonen-Honnarth U, Danell E, Fransson P, Kåren O, Lindahl B, Rangel I, Finlay R (eds) 2nd international conference on mycorrhiza. Abstracts. University of Agricultural Sciences, Uppsala, p 32

    Google Scholar 

  • Brereton JLG (1957) The distribution of woodland isopods. Oikos 8:85–106

    Google Scholar 

  • Brown GG (1995) How do earthworms affect microfloral and faunal community diversity? Plant Soil 170:209–231

    CAS  Google Scholar 

  • Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. Australian Centre for International Agricultural Research, Canberra

    Google Scholar 

  • Buller AHR (1909) Researches on fungi. Longmans, London

    Google Scholar 

  • Buller AHR (1922) Slugs as mycophagists. T Brit Mycol Soc 7(4):270–283

    Google Scholar 

  • Bunyard BA (2018) Deadly Amanita mushrooms as food: a survey of the feeding preferences of mycophagous Diptera from across North America, with notes on evolved detoxication. Fungi 10(4):40–48

    Google Scholar 

  • Burges A (1950) The downward movement of fungal spores in sandy soil. T Brit Mycol Soc 33(1–2):142–147

    Google Scholar 

  • Calhim S, Halme P, Petersen JH, Læssøe T, Bässler C, Heilmann-Clausen J (2018) Fungal spore diversity reflects substrate-specific deposition challenges. Sci Rep-UK 8(1):5356. https://doi.org/10.1038/s41598-018-23292-8

    Article  CAS  Google Scholar 

  • Cameron EK, Zabrodski MW, Karst J, Bayne EM (2012) Non-native earthworm influences on ectomycorrhizal colonization and growth of white spruce. Ecoscience 19(1):29–37

    Google Scholar 

  • Capinera JL (2017) Biology and food habits of the invasive snail Allopeas gracile (Gastropoda: Subulinidae). Fla Entomol 100(1):116–123

    Google Scholar 

  • Castillo-Guevara C, Sierra J, Galindo-Flores G, Cuautle M, Lara C (2011) Gut passage of epigeous ectomycorrhizal fungi by two opportunistic mycophagous rodents. Curr Zool 57:283–299

    Google Scholar 

  • Chagnon PL, Bradley RL, Maherali H, Klironomos JN (2013) A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci 18:484–491

    CAS  PubMed  Google Scholar 

  • Chandler PJ (2010) Associations with fungi and Mycetozoa. In: Chandler P (ed) A Dipterist’s handbook, 2nd ed. The Amateur Entomologist 15:417–441

  • Claridge A, Trappe J (2005) Sporocarp mycophagy: nutritional, behavioral, evolutionary and physiological aspects. In: Dighton J, White J, Oudemans P (eds) The fungal community—its organization and role in the ecosystem, 3rd edn. CRC, Boca Raton, pp 599–611

    Google Scholar 

  • Claridge AW (2002) Ecological role of hypogeous ectomycorrhizal fungi in Australian forests and woodlands. Plant Soil 244:291–305

    CAS  Google Scholar 

  • Claridge AW, Tanton MT, Seebeck JH, Cork SJ, Cunningham RB (1992) Establishment of ectomycorrhizae on the roots of two species of Eucalyptus from fungal spores contained in the faeces of the long-nosed potoroo (Potorous tridactylus). Aust J Ecol 17:207–217

    Google Scholar 

  • Claridge AW, Trappe JM, Claridge DL (2001) Mycophagy by the swamp wallaby (Wallabia bicolor). Wildl Res 28:643–645

    Google Scholar 

  • Coleman DC, Crossley DA Jr, Hendrix PF (2004) Fundamentals of soil ecology. Elsevier Academic Press, Burlington

    Google Scholar 

  • Colgan W, Claridge AW (2002) Mycorrhizal effectiveness of Rhizopogon spores recovered from faecal pellets of small forest-dwelling mammals. Mycol Res 106(3):314–320

    Google Scholar 

  • Comport SS, Hume ID (1998) Gut morphology and rate of passage of fungal spores through the gut of a tropical rodent, the giant white-tailed rat (Uromys caudimaculatus). Aust J Zool 46:461–471

    Google Scholar 

  • Cooper T, Vernes K (2011) Mycophagy in the larger bodied skinks of the genera Tiliqua and Egernia: are there implications for ecosystem health? Zoologist 35(3):681–685

    Google Scholar 

  • Correia M, Heleno R, da Silva LP, Costa JM, Rodríguez-Echeverría S (2018) First evidence for the joint dispersal of mycorrhizal fungi and plant diaspores by birds. New Phytol 222:1054–1060. https://doi.org/10.1111/nph.15571

    Article  Google Scholar 

  • Cork SJ, Kenagy GJ (1989) Rates of gut passage and retention of hypogeous fungal spores in two forest-dwelling rodents. J Mammal 70(3):512–519

    Google Scholar 

  • D’Auria M, Racioppi R, Rana GL, Laurita A (2014) Studies on volatile organic compounds of some truffles and false truffles. Nat Prod Res 28:1709–1717

    PubMed  Google Scholar 

  • Danks MA (2012) Gut-retention time in mycophagous mammals: a review and a study of truffle-like fungal spore retention in the swamp wallaby. Fungal Ecol 5(2):200–210

    Google Scholar 

  • den Boer PJ (1961) The ecological significance of activity patterns in the woodlouse Porcellio scaber. Archives Neerlandaises de Zoologie 14:283–409

    Google Scholar 

  • Ditengou FA, Muller A, Rosenkranz M, Felten J, Lasok H, Miloradovic van Doorn M, Legue’ V, Palme K, Schnitzler JP, Polle A (2015) Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nature Comm 6:6279. https://doi.org/10.1038/ncomms7279

    Article  CAS  Google Scholar 

  • Douhan GW, Vincenot L, Gryta H, Selosse MA (2011) Population genetics of ectomycorrhizal fungi: from current knowledge to emerging directions. Fungal Biol 115(7):569–597

    PubMed  Google Scholar 

  • Dózsa-Farkas K (1992) Über die vertikale Verbreitung der Enchytraeiden (Oligochaeta: Enchytraeidae) in einem Hainbuchen-Eichenwald Ungarns. Opusc Zool Budapest 25:61–74

    Google Scholar 

  • Dubay SA, Hayward GD, Martínez del Rio C (2008) Nutritional value and diet preference of arboreal lichens and hypogeous fungi for small mammals in the Rocky Mountains. Can J Zool 86:851–862

    CAS  Google Scholar 

  • Egan C, Li D-W, Klironomos JN (2014) Detection of arbuscular mycorrhizal fungal spores in the air across different biomes and ecoregions. Fungal Ecol 12:26–31

    Google Scholar 

  • Ekelund F, Rønn R (1994) Notes on protozoa in agricultural soil with emphasis on heterotrophic flagellates and naked amoebae and their ecology. FEMS Microbiol Rev 15(4):321–353

    CAS  PubMed  Google Scholar 

  • Elliott WT (1922) Some observations on the mycophagous propensities of slugs. Trans Brit Mycol Soc 8(1–2):84–90

    Google Scholar 

  • Epps MJ, Penick CA (2018) Facultative mushroom feeding by common woodland ants (Formicidae, Aphaenogaster spp.). Food Webs 14:9–13

    Google Scholar 

  • Fogel R, Trappe JM (1978) Fungus consumption (mycophagy) by small animals. Northwest Sci 52:1–31

    Google Scholar 

  • Fogel R, Peck BS (1975) Ecological studies of hypogeous fungi. I. Coleoptera associated with sporocarps. Mycologia 67:741–747

    CAS  PubMed  Google Scholar 

  • Fracchia S, Krapovickas L, Valentinuzzi VS (2011) Dispersal of arbuscular mycorrhizal fungi and dark septate endophytes by Ctenomys cf. knighti (Rodentia) in the northern Monte Desert of Argentina. J Arid Environ 75(11):1016–1023

    Google Scholar 

  • Fries N (1984) Spore germination in the higher basidiomycetes. Proceedings: Plant Sciences 93(3):205

    Google Scholar 

  • Friese CF, Allen MF (1991) Tracking the fates of exotic and local VA mycorrhizal fungi: methods and patterns. Agric Ecosyst Environ 34:87–96

    Google Scholar 

  • Frouz J, Ali A, Frouzova J, Lobinske RJ (2004) Horizontal and vertical distribution of soil macroarthropods along a spatio-temporal moisture gradient in subtropical Central Florida. Environ Entomol 33(5):1282–1295

    Google Scholar 

  • Gain WA (1891) Notes on the food of some of the British mollusks. J Conchol 6(1):349–352

    Google Scholar 

  • Galante TE, Horton T, Swaney D (2011) 95% of basidiospores fall within 1 m of the cap: a field- and modeling-based study. Mycologia 103(6):1175–1183

    PubMed  Google Scholar 

  • Gange A (2000) Arbuscular mycorrhizal fungi, Collembola and plant growth. Trends Ecol Evol 15:369–372

    CAS  PubMed  Google Scholar 

  • Gardner MR (1974) Revision of the millipede family Andrognathidae in the Nearctic region. Mem Pac Coast Entomol Soc 5:1–61

    Google Scholar 

  • Geisen S, Mitchell EA, Adl S, Bonkowski M, Dunthorn M, Ekelund F, Fernández LD, Jousset A, Krashevska JV, Singer D, Spiegel FW, Walochnik J, Lara E (2018) Soil protists: a fertile frontier in soil biology research. FEMS Microbiol Rev 42(3):293–323

    CAS  PubMed  Google Scholar 

  • Giannakis N, Sanders FE (1989) Interactions between mycophagous nematodes, mycorrhizal and other soil fungi. Agric Ecosyst Environ 29(1–4):163–167

    Google Scholar 

  • Glassman SI, Levine CR, DiRocco AM, Battles JJ, Bruns TD (2016) Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot. ISME J 10:1228–1239

    PubMed  Google Scholar 

  • Glen DM, Milsom NF, Wiltshire CW (1990) Effect of seed depth on slug damage to winter wheat. Ann App Biol 117:693–701

    Google Scholar 

  • Gormsen D, Olsson PA, Hedlund K (2004) The influence of collembolans and earthworms on AM fungal mycelium. Appl Soil Ecol 27(3):211–220

    Google Scholar 

  • Green K, Tory MK, Mitchell AT, Tennant P, May TW (1999) The diet of the long-footed potoroos (Potorous longipes). Aust Ecol 24:151–156

    Google Scholar 

  • Halbwachs H, Bässler C (2015) Gone with the wind—a review on basidiospores of lamellate agarics. Mycosphere 6(1):78–112

    Google Scholar 

  • Halbwachs H, Brandl R, Bässler C (2015) Spore wall traits of ectomycorrhizal and saprotrophic agarics may mirror their distinct lifestyles. Fungal Ecol 17:197–204

    Google Scholar 

  • Hallet JG, O’Connell MA, Maguire CC (2003) Ecological relationships of terrestrial small mammals in western coniferous forests. In: Zabel CJ, Anthony RG (eds) Mammal community dynamics. Cambridge University Press, Cambridge, pp 120–156

    Google Scholar 

  • Hämäläinen A, Broadley K, Droghini A, Haines JA, Lamb CT, Boutin S, Gilbert S (2017) The ecological significance of secondary seed dispersal by carnivores. Ecosphere 8(2). https://doi.org/10.1002/ecs2.1685

    Google Scholar 

  • Harinikumar KM, Bagyaraj DJ (1994) Potential of earthworms, ants, millipedes, and termites for dissemination of vesicular-arbuscular mycorrhizal fungi in soil. Biol Fert Soil 18(2):115–118

    Google Scholar 

  • Harinikumar KM, Bagyaraj DJ, Kale RD (1994) Vesicular arbuscular mycorrhizal propagules in earthworm cast. In: Veeresh GK, Rajagopal D, Viraktamath CV (eds) Advances in management and conservation of soil fauna. South Asia Books, pp 605–610

  • Hassall M, Turner JG, Rands MRW (1987) Effects of terrestrial isopods on the decomposition of woodland leaf litter. Oecologia 72(4):597–604

    CAS  PubMed  Google Scholar 

  • Hedlund K, Augustsson A (1995) Effects of Enchytraeid grazing on fungal growth and respiration. Soil Biol Biochem 27:905–909

    CAS  Google Scholar 

  • Hopkin SP (1997) Biology of the springtails. Oxford University Press, Oxford

  • Hornung E (1981) Investigation on the productivity of the macrodecomposer isopod, Trachelipus nodulosus C.L.Koch. Acta Biologica Szegediensis 27(1–4):203–208

    Google Scholar 

  • Horton TR (2017) Spore dispersal in ectomycorrhizal fungi at fine and regional scales. In: Tedersoo L (ed) Biogeography of mycorrhizal symbiosis. Springer, Cham, pp 61–78

    Google Scholar 

  • Houston TF, Bougher NL (2010) Records of hypogeous mycorrhizal fungi in the diet of some Western Australian bolboceratine beetles (Coleoptera: Geotrupidae, Bolboceratinae). Aust J Entomol 49(1):49–55

    Google Scholar 

  • Ingold CT (1953) Dispersal in fungi. Clarendon, London

    Google Scholar 

  • Ingold CT (1973) The gift of a truffle. Bull Br Mycol Soc 7:32–33

    Google Scholar 

  • Jacobsen RM, Kauserud H, Sverdrup-Thygeson A, Bjorbækmo MM, Birkemoe T (2017) Wood-inhabiting insects can function as targeted vectors for decomposer fungi. Fungal Ecol 29:76–84

    Google Scholar 

  • Jakovlev J (2012) Fungal hosts of mycetophilids (Diptera: Sciaroidea excluding Sciaridae): a review. Mycology 3:11–23

    Google Scholar 

  • Jakovlev J (1994) Palearctic Diptera associated with fungi and myxomycetes. Karelian Research Center, Russian Academy of Sciences, Forest Research Institute, Petrozavodsk [In Russian with English summary]

    Google Scholar 

  • Janos DP, Sahley CT, Emmons LH (1995) Rodent dispersal of vesicular-arbuscular mycorrhizal fungi in Amazonian Peru. Ecology 76:1852–1858

    Google Scholar 

  • Johnson CN (1994) Mycophagy and spore dispersal by a rat-kangaroo: consumption of ectomycorrhizal taxa in relation to their abundance. Funct Ecol 8:464–468

    Google Scholar 

  • Judd WW (1957) A collection of insects and millipeds from fungi in Ontario. T Am Microsc Soc 76:311–316

    Google Scholar 

  • Kempken F, Rohlfs M (2010) Fungal secondary metabolite biosynthesis—a chemical defence strategy against antagonistic animals? Fungal Ecol 3(3):107–114

    Google Scholar 

  • Kitabayashi K, Tuno N, Hosaka K, Yaguchi Y (2016) Natures of ingested basidio-spores in dipteran larvae inhabiting sporophores of Agaricomycetidae. Jpn J Mycol 57:69–76

    Google Scholar 

  • Kjøller R, Olsrud M, Michelsen A (2010) Co-existing ericaceous plant species in a subarctic mire community share fungal root endophytes. Fungal Ecol 3(3):205–214

    Google Scholar 

  • Klironomos JN, Hart MM (2002) Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza 12(4):181–184

    PubMed  Google Scholar 

  • Klironomos JN, Moutoglis P (1999) Colonization of nonmycorrhizal plants by mycorrhizal neighbours as influenced by the collembolan, Folsomia candida. Biol Fert Soil 29(3):277–281

    Google Scholar 

  • Klironomos JN, Bednarczuk EM, Neville J (1999) Reproductive significance of feeding on saprobic and arbuscular mycorrhizal fungi by the collembolan, Folsomia candida. Funct Ecol 13(6):756–761

    Google Scholar 

  • Kobayashi M, Kitabayashi K, Tuno N (2017) Spore dissemination by mycophagous adult drosophilids. Ecol Res 32(4):621–626

    Google Scholar 

  • Koskinen J, Roslin T, Nyman T, Abrego N, Michell C, Vesterinen EJ (2019) Finding flies in the mushroom soup: host specificity of fungus-associated communities revisited with a novel molecular method. Mol Ecol 28:190–202. https://doi.org/10.1111/mec.14810

    PubMed  Google Scholar 

  • Kotter MM, Farentinos RC (1984) Formation of ponderosa pine Ectomycorrhizae after inoculation with feces of tassel-eared squirrels. Mycologia 76(4):758–760

    Google Scholar 

  • Krab EJ, Oorsprong H, Berg MP, Cornelissen JH (2010) Turning northern peatlands upside down: disentangling microclimate and substrate quality effects on vertical distribution of Collembola. Funct Ecol 24(6):1362–1369

    Google Scholar 

  • Kües U, Khonsuntia W, Subba S, Dörnte B (2018) Volatiles in communication of Agaricomycetes. In: Anke T, Schüffler A (eds) Physiology and genetics. Springer, Cham, pp 149–212

    Google Scholar 

  • Lamont BB, Ralph CS, Christensen PES (1985) Mycophagous marsupials as dispersal agents for ectomycorrhizal fungi on eucalyptus Calophylla and Gastrolobium bilobum. New Phytol 101(4):651–656

    Google Scholar 

  • Lehmitz R, Russell D, Hohberg K, Christian A, Xylander WE (2012) Active dispersal of oribatid mites into young soils. App Soil Ecol 55:10–19

    Google Scholar 

  • Lekberg Y, Waller LP (2016) What drives differences in arbuscular mycorrhizal fungal communities among plant species? Fungal Ecol 24:135–138

    Google Scholar 

  • Lekberg Y, Meadow J, Rohr JR, Redecker D, Zabinski CA (2011) Importance of dispersal and thermal environment for mycorrhizal communities: lessons from Yellowstone National Park. Ecology 92(6):1292–1302

    PubMed  Google Scholar 

  • Lilleskov EA, Bruns TD (2005) Spore dispersal of a resupinate ectomycorrhizal fungus, Tomentella sublilacina, via soil food webs. Mycologia 97(4):762–769

    PubMed  Google Scholar 

  • Livne-Luzon S, Avidan Y, Weber G, Migael H, Bruns T, Ovadia O, Shemesh H (2017) Wild boars as spore dispersal agents of ectomycorrhizal fungi: consequences for community composition at different habitat types. Mycorrhiza 27(3):165–174

    CAS  PubMed  Google Scholar 

  • López-García Á, Azcón-Aguilar C, Barea JM (2014) The interactions between plant life form and fungal traits of arbuscular mycorrhizal fungi determine the symbiotic community. Oecologia 176:1075–1086

    PubMed  Google Scholar 

  • Luoma DL, Trappe JM, Claridge AW, Jacobs KM, Cazares E (2003) Relationships among fungi and small mammals in forested ecosystems. In: Zable CJ, Anthony RG (eds) Mammal community dynamics: management and conservation in the coniferous forests of western North America. Cambridge University Press, Cambridge, pp 343–373

    Google Scholar 

  • Maaß S, Caruso T, Rillig MC (2015) Functional role of microarthropods in soil aggregation. Pedobiologia 58(2–3):59–63

    Google Scholar 

  • Malmström A, Persson T (2011) Responses of Collembola and Protura to tree girdling—some support for ectomycorrhizal feeding. Soil Org 83:279–285

    Google Scholar 

  • Mangan SA, Adler GH (2002) Seasonal dispersal of arbuscular mycorrhizal fungi by spiny rats in a neotropical forest. Oecologia 131(4):587–597

    PubMed  Google Scholar 

  • Maraun M, Migge S, Schaefer M, Scheu S (1998) Selection of microfungal food by six oribatid mite species (Oribatida, Acari) from two different beech forests. Pedobiologia 42(3):232–240

    Google Scholar 

  • Maser C, Claridge AW, Trappe JM (2008) Trees, truffle, and beasts: how forests function. Rutgers University Press, New Brunswick

    Google Scholar 

  • Maser C, Trappe JM, Nussbaum RA (1978) Fungal-small mammal interrelationships with emphasis on Oregon coniferous forests. Ecology 59:799–809

    Google Scholar 

  • Maunder JE, Voitk AJ (2010) What we don’t know about slugs and mushrooms. Fungi 3(3):36–44

    Google Scholar 

  • McGee PA, Baczocha N (1994) Sporocarpic Endogonales and Glomales in the scats of Rattus and Perameles. Mycol Res 98(2):246–249

    Google Scholar 

  • McGraw R, Duncan N, Cazares E (2002) Fungi and other items consumed by the blue-gray taildropper slug (Prophysaon coeruleum) and the papillose taildropper slug (Prophysaon dubium). The Veliger 45(3):261–264

    Google Scholar 

  • McIlveen WD, Cole H Jr (1976) Spore dispersal of Endoganaceae by worms, ants, wasps, and birds. Can J Botany 54:1486–1489

    Google Scholar 

  • Medway DG (2000) Mycophagy by North Island robin. Australas Mycol 19:102

    Google Scholar 

  • Menta C, Pinto S (2016) Biodiversity and ecology of soil fauna in relation to truffle. In: Zambonelli A, Iotti M, Murat C (eds) True truffle (Tuber spp.) in the World. Springer, Cham, pp 319–331

    Google Scholar 

  • Miller HA, Halls LK (1969) Fleshy fungi commonly eaten by Southern wildlife. USDA Forest Service Res Paper SO-49

  • Molina R, Horton TR (2015) Mycorrhiza specificity: its role in the development and function of common mycelial networks. In: Horton TR (ed) Mycorrhizal networks. Springer, Dordrecht, pp 1–39

    Google Scholar 

  • Molina R, Horton TR, Trappe JM, Marcot BG (2011) Addressing uncertainty: how to conserve and manage rare or little-known fungi. Fungal Ecol 4(2):134–146

    Google Scholar 

  • Montecchio L, Scattolin L, Squartini A, Butt KR (2015) Potential spread of forest soil-borne fungi through earthworm consumption and casting. iForest 8:295–301

    Google Scholar 

  • Morton JB, Bentivenga SP, Bever JD (1995) Discovery, measurement, and interpretation of diversity in arbuscular endomycorrhizal fungi (Glomales, Zygomycetes). Can J Bot 73:25–32

    Google Scholar 

  • Müller A, Faubert P, Hagen M, Zu Castell W, Polle A, Schnitzler JP, Rosenkranz M (2013) Volatile profiles of fungi-chemotyping of species and ecological functions. Fungal Genet Biol 54:25–33

    PubMed  Google Scholar 

  • Nakamori T, Suzuki A (2005) Spore-breaking capabilities of collembolans and their feeding habitat within sporocarps. Pedobiologia 49(3):261–267

    Google Scholar 

  • Nakamori T, Suzuki A (2007) Defensive role of cystidia against Collembola in the basidiomycetes Russula bella and Strobilurus ohshimae. Mycol Res 111(11):1345–1351

    PubMed  Google Scholar 

  • Nakamori T, Suzuki A (2010) Spore resistance and gut-passage time of macrofungi consumed by Ceratophysella denisana (Collembola: Hypogastruridae). Fungal Ecol 3(1):38–42

    Google Scholar 

  • Nakamori T, Suzuki A (2012) Occurrence and gut contents of flatworms on fungal sporocarps. J Nat Hist 46(45–46):2763–2767

    Google Scholar 

  • Nakano M, Ochiai A, Kamata K, Nakamori T (2017) The preference of Morulina alata (Collembola: Neanuridae) feeding on some fungal sporocarps and the effects of passage through the gut on spores. Eur J Soil Biol 81:116–119

    Google Scholar 

  • Nara K (2008) Spores of ectomycorrhizal fungi: ecological strategies for germination and dormancy. New Phytol 181:245–248

    Google Scholar 

  • Neutel AM, Heesterbeek JAP, de Ruiter PC (2002) Stability in real food webs: weak links in long loops. Science 296:1120–1123

    CAS  PubMed  Google Scholar 

  • Nielsen KB, Kjøller R, Bruun HH, Schnoor TK, Rosendahl S (2016) Colonization of new land by arbuscular mycorrhizal fungi. Fungal Ecol 20:22–29

    Google Scholar 

  • Nguyen NH (2018) Longevity of light- and dark-colored basidiospores from saprotrophic mushroom-forming fungi. Mycologia 110(1):131–135

    PubMed  Google Scholar 

  • Nuñez MA, Hayward J, Horton TR, Amico GC, Dimarco RD, Barrios-Garcia MN, Simberloff D (2013) Exotic mammals disperse exotic fungi that promote invasion by exotic trees. PLoS One 8(6):e66832. https://doi.org/10.1371/journal.pone.0066832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuske SJ, Vernes K, May TW, Claridge AW, Congdon BC, Krockenberger A, Abell SE (2017) Redundancy among mammalian fungal dispersers and the importance of declining specialists. Fungal Ecol 27:1–13

    Google Scholar 

  • Nuske SJ, Anslan S, Tedersoo L, Bonner MT, Congdon BC, Abell SE (2018) The endangered northern bettong, Bettongia tropica, performs a unique and potentially irreplaceable dispersal function for ectomycorrhizal truffle fungi. Mol Ecol 27(23):4960–4971

    PubMed  Google Scholar 

  • Nuske SJ, Anslan S, Tedersoo L, Congdon BC, Abell SE (2019) Ectomycorrhizal fungal communities are dominated by mammalian dispersed truffle-like taxa in north-east Australian woodlands. Mycorrhiza 29:181–183

    CAS  PubMed  Google Scholar 

  • Oehl F, da Silva GA, Goto BT, Sieverding E (2011) Glomeromycota: three new genera and glomoid species reorganized. Mycotaxon 116:75–120

    Google Scholar 

  • Ohsowski BM, Zaitsoff PD, Öpik M, Hart MM (2014) Where the wild things are: looking for uncultured Glomeromycota. New Phytol 204(1):171–179

    PubMed  Google Scholar 

  • Öpik M, Davison J, Moora M, Zobel M (2014) DNA-based detection and identification of Glomeromycota: the virtual taxonomy of environmental sequences. Botany 92:135–147

    Google Scholar 

  • Ori F, Trappe J, Leonardi M, Iotti M, Pacioni G (2018) Crested porcupines (Hystrix cristata): mycophagist spore dispersers of the ectomycorrhizal Tuber aestivum. Mycorrhiza 28:561–565

    PubMed  Google Scholar 

  • Pacioni G, Bologna MA, Laurenzi M (1991) Insect attraction by Tuber: a chemical explication. Mycol Res 95:1359–1363

    CAS  Google Scholar 

  • Pálková R (2013) Space activity and sheltering behaviour of terrestrial isopods. Master thesis, Palacky University Olomouc

  • Pattinson GS, Smith SE, Doube BM (1997) Earthworm Aporrectodea trapezoides had no effect on the dispersal of a vesicular-arbuscular mycorrhizal fungi, Glomus intraradices. Soil Biol Biochem 29(7):1079–1088

    CAS  Google Scholar 

  • Paugy M, Baillon F, Chevalier D, Duponnois R (2004) Elephants as dispersal agents of mycorrhizal spores in Burkina Faso. Afr J Ecol 21:123–128

    Google Scholar 

  • Piattoni F, Amicucci A, Iotti M, Ori F, Stocchi V, Zambonelli A (2014) Viability and morphology of Tuber aestivum spores after passage through the gut of Sus scrofa. Fungal Ecol 9(1):52–60

    Google Scholar 

  • Põldmaa K, Kaasik A, Tammaru T, Kurina O, Jürgenstein S, Teder T (2016) Polyphagy on unpredictable resources does not exclude host specialization: insects feeding on mushrooms. Ecology 97:2824–2833

    PubMed  Google Scholar 

  • Ponder F Jr. (1980) Rabbits and grasshoppers: vectors of endomycorrhizal fungi on new coal mine spoil. USDA Forest Service Res Note NC-250, St. Paul, MN

  • Ponge JF (1991) Food resources and diets of soil animals in a small area of Scots pine litter. Geoderma 49(1–2):33–62

    Google Scholar 

  • Rabatin SC, Stinner BR (1985) Arthropods as consumers of vesicular-arbuscular mycorrhizal fungi. Mycologia 77(2):320–322

    Google Scholar 

  • Rabatin SC, Stinner BR (1988) Indirect effects of interactions between VAM fungi and soil-inhabiting invertebrates on plant processes. Agric Ecosyst Environ 24(1–3):135–146

    Google Scholar 

  • Rabatin SC, Stinner BR (1989) The significance of vesicular-arbuscular mycorrhizal fungal-soil interactions in agroecosystems. Agric Ecosyst Environ 27:195–204

    Google Scholar 

  • Redecker D, Raab P, Oehl F, Camacho FJ, Courtecuisse R (2007) A novel clade of sporocarp-forming species of glomeromycotan fungi in the Diversisporales lineage. Mycol Prog 6:35–44

    Google Scholar 

  • Reddell P, Spain AV, Hopkins M (1997) Dispersal of spores of mycorrhizal fungi in scats of native mammals in tropical forests of northeastern Australia. Biotropica 29(2):184–192

    Google Scholar 

  • Reddell P, Spain AV (1991) Earthworms as vectors of viable propagules of mycorrhizal fungi. Soil Biol Biochem 23(8):767–774

    Google Scholar 

  • Rémy P (1950) Les Millotauropus, types d’un nouveau groupe de Pauropodes. Cr Hebd Acad Sc 230:472–473

    Google Scholar 

  • Rendoš M, Mock A, Miklisová D (2016) Terrestrial isopods and myriapods in a forested scree slope: subterranean biodiversity, depth gradient and annual dynamics. J Nat Hist 50(33–34):2129–2142

    Google Scholar 

  • Renker C, Otto P, Schneider K, Zimdars B, Maraun M, Buscot F (2005) Oribatid mites as potential vectors for soil microfungi: study of mite-associated fungal species. Microb Ecol 50(4):518–528

    CAS  PubMed  Google Scholar 

  • Riffle JW (1975) Two Aphelenchoides species suppress formation of Suillus granulatus ectomycorrhizae with Pinus ponderosa seedlings. Plant Dis Rep 59:951–955

    Google Scholar 

  • Rockefeller A (2012) Observation 93252: Corticiaceae sensu lato. Mushroom Observer. https://mushroomobserver.org/93252. Accessed 10 October 2018

  • Roháček J, Ševčík J (2013) Diptera associated with sporocarps of Meripilus giganteus in an urban habitat. Centr Eur J Biol 8:143–167

    Google Scholar 

  • Rothwell FM, Holt C (1978) Vesicular-arbuscular mycorrhizae established with Glomus fasciculatus spores isolated from the feces of cricetine mice. USDA Forest Service Res Note NE-259, Broomall, PA

  • Ruddick SM, Williams ST (1972) Studies on the ecology of actinomycetes in soil V. Some factors influencing the dispersal and adsorption of spores in soil. Soil Biol Biochem 4(1):93–103

    Google Scholar 

  • Rudy J, Rendoš M, Ľuptáčik P, Mock A (2018) Terrestrial isopods associated with shallow underground of forested scree slopes in the Western Carpathians (Slovakia). In: Hornung E, Taiti S, Szlavecz K (eds) Isopods in a changing world. ZooKeys 801:323–335

  • Ruess L, Lussenhop J (2005) Trophic interactions of fungi and animals. In: Dighton J, White J, Oudemans P (eds) The fungal community—its organization and role in the ecosystem, 3rd edn. CRC, Boca Raton, pp 581–598

    Google Scholar 

  • Sawahata T, Shimano S, Suzuki M (2008) Tricholoma matsutake 1-Ocen-3-ol and methyl cinnamate repel mycophagous Proisotoma minuta (Collembola: Insecta). Mycorrhiza 18(2):111–114

    CAS  PubMed  Google Scholar 

  • Shachak M (1980) Energy allocation and life history strategy of the desert isopod H. reaumuri. Oecologia 45(3):404–413

    PubMed  Google Scholar 

  • Schickmann S, Urban A, Kräutler K, Nopp-Mayr U, Hackländer K (2012) The interrelationship of mycophagous small mammals and ectomycorrhizal fungi in primeval, disturbed and managed central European mountainous forests. Oecologia 170(2):395–409

    PubMed  PubMed Central  Google Scholar 

  • Schigel DS (2009) Polypore assemblages in boreal old-growth forests, and associated Coleoptera (dissertation).Publications in Botany from the University of Helsinki 39:1–44

  • Schneider K, Renker C, Maraun M (2005) Oribatid mite (Acari, Oribatida) feeding on ectomycorrhizal fungi. Mycorrhiza 16(1):67–72

    PubMed  Google Scholar 

  • Simpson J (1998) Why don’t more birds eat more fungi? Aust Mycol Newsl 17:67–68

    Google Scholar 

  • Simpson J (2000) More on mycophagous birds. Aust Mycol Newsl 19:49–51

    Google Scholar 

  • Smith ME, Henkel TW, Rollins JA (2015) How many fungi make sclerotia? Fungal Ecol 13:211–220

    Google Scholar 

  • Soma K, Saito T (1983) Ecological studies of soil organisms with references to the decomposition of pine needles. Plant Soil 75(1):139–151

    Google Scholar 

  • Starling JH (1944) Ecological studies of the Pauropoda of the Duke Forest. Ecol Monogr 14:291–310

    Google Scholar 

  • Sturm H (1959) Die nahrung der Proturen. Naturwissenschaften 46(2):90–91

    Google Scholar 

  • Sugiyama Y, Murata M, Kanetani S, Nara K (2019) Towards the conservation of ectomycorrhizal fungi on endangered trees: native fungal species on Pinus amamiana are rarely conserved in trees planted ex situ. Mycorrhiza 29:195–205. https://doi.org/10.1007/s00572-019-00887-1

    Article  PubMed  Google Scholar 

  • Ševčík J (2003) Insects associated with wood–decaying fungi in the Czech and Slovak republics: a review of present knowledge. Acta Facultatis Rerum Naturalium Universitas Ostraviensis, Biologica–Ecologica 9:159–165

    Google Scholar 

  • Ševčík J (2010) Czech and Slovak Diptera associated with fungi. Slezské zemské muzeum, Opava

    Google Scholar 

  • Tajovský K (1992) Feeding biology of the millipede Glomeris hexasticha (Glomeridae, Diplopoda). Berichte des naturwissenschaftlich-medizinischen Vereins in Innsbruck. Supplement 10:305–311

    Google Scholar 

  • Tedersoo L, Hansen K, Perry BA, Kjøller R (2006) Molecular and morphological diversity of pezizalean ectomycorrhiza. New Phytol 170(3):581–596

    CAS  PubMed  Google Scholar 

  • Telfer K, Brurberg M, Haukeland S, Stensvand A, Talgø V (2015) Phytophthora survives the digestive system of the invasive slug Arion vulgaris. Eur J Plant Pathol 142(1):125–132

    Google Scholar 

  • Terwilliger J, Pastor J (1999) Small mammals, Ectomycorrhizae, and conifer succession in beaver meadows. Oikos 85(1):83–94

    Google Scholar 

  • Taylor DL, Sinsabaugh RL (2015) The soil fungi. In: Paul EA (ed) Soil microbiology, ecology and biochemistry, 4th edn. Academic, London

    Google Scholar 

  • Trappe J, Claridge A (2005) Hypogeous fungi: evolution of reproductive and dispersal strategies through interactions with animals and mycorrhizal plants. In: Dighton J, White J, Oudemans P (eds) The fungal community—its organization and role in the ecosystem, 3rd edn. CRC, Boca Raton, pp 613–623

    Google Scholar 

  • Trappe JM, Molina R, Luorna DL, Cázares E, Pilz D, Smith JE, Castellano MA, Miller SL, Trappe MJ (2009) Diversity, ecology and conservation of truffle fungi in forests of Pacific Northwest. USDA Forest Service Gen Tech ep PNW-GTR-772, Portland, OR

  • Trappe JM, Maser C (1976) Germination of spores of Glomus macrocarpus (Endogonaceae) after passage through a rodent digestive tract. Mycologia 68(2):433–436

    Google Scholar 

  • Trappe JM, Maser C (1977) Ectomycorrhizal fungi: interactions of mushrooms with beasts and trees. In: Walters T (ed) Mushrooms and man: an interdisciplinary approach in mycology. Linn-Benton Community College, Albany, OR, pp 165–179

    Google Scholar 

  • Treonis A (2017) Belowground trophic interactions. In: Dighton J, White J (eds) The fungal community: its organization and role in the ecosystem, 4th edn. CRC, Boca Raton, pp 333–346

    Google Scholar 

  • Türke M, Lange M, Eisenhauer N (2018) Gut shuttle service: endozoochory of dispersal-limited soil fauna by gastropods. Oecologia 186(3):655–664

    PubMed  Google Scholar 

  • Urban A (2016) Truffles and small mammals. In: Zambonelli A, Iotti M, Murat C (eds) True truffle (tuber spp.) in the world. Springer, Cham, pp 353–373

  • Urban A, Neuner-Plattner I, Krisai-Greilhuber I, Haselwandter K (2004) Molecular studies on terricolous microfungi reveal novel anamorphs of two Tuber species. Mycol Res 108:749–758

    CAS  PubMed  Google Scholar 

  • Varela-Cervero S, López-García Á, Barea JM, Azcón-Aguilar C (2016) Differences in the composition of arbuscular mycorrhizal fungal communities promoted by different propagule forms from a Mediterranean shrubland. Mycorrhiza 26:489–496

    PubMed  Google Scholar 

  • Vašutová M, Edwards-Jonášová M, Veselá P, Effenberková L, Fleischer P, Cudlín P (2018) Management regime is the most important factor influencing ectomycorrhizal species community in Norway spruce forests after windthrow. Mycorrhiza 28(3):221–233

    PubMed  Google Scholar 

  • Verner J, Gutiérrez RJ, Gould GI Jr. (1992) The California spotted owl: general biology and ecological relations. In: Verner J, McKelvey KS, Noon BR, Gutiérrez RJ, Gould GJ Jr., Beck TW (eds) The California spotted owl: a technical assessment of its current status. USDA Forest Service Gen Tech Rep PSW-GTR-133, pp 55–78

  • Vernes K, Dunn L (2009) Mammal mycophagy and fungal spore dispersal across a steep environmental gradient in eastern Australia. Aust Ecol 34:69–76

    Google Scholar 

  • Vernes K, Cooper T, Green S (2015) Seasonal fungal diets of small mammals in an Australian temperate forest ecosystem. Fungal Ecol 18:107–114

    Google Scholar 

  • Vernes K, Poirier N (2007) Use of a robin’s nest as a cache site for truffles by a red squirrel. Northeast Nat 14:145–149

    Google Scholar 

  • Voglino P (1895) Richerche intorno all'azione della lumacha e dei rospi nello sviluppo di Agaricini. Nuovo Gior Bot Italiano (Forli) 27:181–185

    Google Scholar 

  • Walther G, Garnica S, Weiß M (2005) The systematic relevance of conidiogenesis modes in the gilled Agaricales. Mycol Res 109(5):525–544

    CAS  PubMed  Google Scholar 

  • Warner GM, French DW (1970) Dissemination of fungi by migratory birds: survival and recovery of fungi from birds. Can J Botany 48(5):907–910

    Google Scholar 

  • Warner NJ, Allen MF, MacMahon JA (1987) Dispersal agents of vesicular-arbuscular mycorrhizal fungi in a disturbed arid ecosystem. Mycologia 79(5):721–730

    Google Scholar 

  • Welter-Schultes FW (2012) European non-marine molluscs, a guide for species identification. Planet Poster Editions, Göttingen

    Google Scholar 

  • Wijayawardene NN, Pawlowska J, Letcher PM, Kirk PM, Humber RA et al (2018) Notes for genera: basal clades of fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota). Fungal Divers 92(1):43–129

    Google Scholar 

  • Wolf FT, Wolf FA (1939) The snail Polygyra thyroidus as a mycophagist. B Torrey Bot Club 66(1):1–5

    Google Scholar 

  • Wöllmer H, Kottke I (1990) Fine root studies in situ and in the laboratory. Environ Pollut 68:383–407

    PubMed  Google Scholar 

  • Wong VL (2017) Natural history of the social millipede Brachycybe lecontii (Wood, 1864). Thesis, the Virginia Polytechnic Institute and State University

  • Wood JR, Dickie IA, Moeller HV, Peltzer DA, Bonner KI, Rattray G, Wilmshurst JM (2015) Novel interactions between non-native mammals and fungi facilitate establishment of invasive pines. J Ecol 103(1):121–129

    Google Scholar 

  • Yamashita S, Hijii N (2003) Effects of mushroom size on the structure of a mycophagous arthropod community: comparison between infracommunities with different types of resource utilization. Ecol Res 18(2):131–143

    Google Scholar 

  • Zak B (1965) Aphids feeding on Douglas-fir. For Sci 11:410–411

    Google Scholar 

  • Zambonelli A, Ori F, Hall I (2017) Mycophagy and spore dispersal by vertebrates. In: Dighton J, White JF (eds) The fungal community: its organization and role in the ecosystem, 4th edn. CRC, Boca Raton, pp 347–358

    Google Scholar 

  • Zielinski WJ, Duncan NP, Farmer EC, Truen RL, Clevenger AP, Barrett RH (1999) Diet of fishers (Martes pennati) at the southernmost extent of their range. J Mammal 80:961–971

    Google Scholar 

Download references

Acknowledgments

First of all, we acknowledge the COST Action FP1305 Biolink (and its chair Martin Lukac, co-chair Johannes Rousk and Sietse van der Linde) because the idea to review this topic stemmed from our meetings in this network. Consultation from the members of the Laboratory of Social and Myrmecophilous Insects, Museum and Institute of Zoology, PAS (Warsaw, Poland) is highly acknowledged. We thank Keith Edwards for improving the English language of the manuscript. M.F. Allen and two anonymous reviewers gave valuable comments on the manuscript.

Funding

M.V. was partly supported by the Ministry of Education, Youth and Sports of CR within the National Sustainability Program I (NPU I) (Grant No. LO1415) and partly by the Grant Agency of the Czech Republic (Grant No. 31-19-15031S); P.M. was supported by the Institute of Botany, Jagiellonian University (K/ZDS/007340, K/ZDS/007344); A.L.G. was partly supported by a European Union’s Horizon 2020 Marie Curie Individual Fellowship (Grant No. 708530 – DISPMIC) and partly by the Spanish government under the Plan Nacional de I+D+I (project CGL2015-69118-C2-2-P - COEXMED-II); I.M. was supported by the Slovenian Research Agency project J4-7052 and research core funding P4-008; I.H.T. was partly supported by a grant from the Czech Ministry of Agriculture (No. QJ1630422). R.K. was partly supported by the ‘Center for Bioenergy Recycling – ASHBACK’ funded by the Danish Council for Strategic Research (Grant No. 0606-00587B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Vašutová.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 304 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vašutová, M., Mleczko, P., López-García, A. et al. Taxi drivers: the role of animals in transporting mycorrhizal fungi. Mycorrhiza 29, 413–434 (2019). https://doi.org/10.1007/s00572-019-00906-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-019-00906-1

Keywords

Navigation