Skip to main content
Log in

Mycorrhizal microbiomes

  • Review
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

This Mycorrhiza issue groups topical papers based on presentations and discussions at the Mycorrhizal Microbiomes session at 9th International Conference on Mycorrhiza, Prague, Czech Republic, August 2017. The five articles that appear in this special issue advance the field of mycorrhizal microbiomes, not simply by importing ideas from an emerging area, but by using them to inform rich and methodologically grounded research. The aim of this special issue is to explore the interactions between mycorrhizal fungi and surrounding complex environments from a distinct but complementary point of view, highlighting the large spectrum of unknowns that still need to be explored. In this editorial, we first introduce the level of knowledge in this thematic area, then describe major results from the five manuscripts and characterise their importance to mycorrhizal research, and finally discuss the developing topics in this rapidly emerging thematic area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amend AS, Martiny AC, Allison SD, Berlemont R, Goulden ML, Lu Y, Treseder KK, Weihe C, Martiny JB (2016) Microbial response to simulated global change is phylogenetically conserved and linked with functional potential. ISME J 10:109–118

    Article  CAS  PubMed  Google Scholar 

  • Antony-Babu S, Deveau A, Van Nostrand JD, Zhou J, Le Tacon F, Robin C, Frey-Klett P, Uroz S (2014) Black truffle–associated bacterial communities during the development and maturation of Tuber melanosporum ascocarps and putative functional roles. Environ Microbiol 16:2831–2847

    Article  CAS  PubMed  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    Article  CAS  PubMed  Google Scholar 

  • Ash C (2016) Fungi help trees hunt for food. Science 53(6300):661

    Article  Google Scholar 

  • Augè R (2001) International directory of mycorrhizologists. Mycorrhiza 11:115–116

    Article  Google Scholar 

  • Banerjee S, Schlaeppi K, van der Heijden MGA (2018) Keystone taxa as drivers of microbiome structure and functioning. Nat RevMicrobiol 16(9):567–576

    Article  CAS  PubMed  Google Scholar 

  • Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Berruti A, Lumini E, Balestrini R, Bianciotto V (2015) Arbuscular mycorrhizal Fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1559

    PubMed  Google Scholar 

  • Bomberg M, Jurgens G, Saano A, Sen R, Timonen S (2003) Nested PCR detection of archaea in defined compartments of pine mycorrhizospheres developed in boreal forest humus microcosms. FEMS Microbiol Ecol 43:163–171

    Article  CAS  PubMed  Google Scholar 

  • Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383

    Article  CAS  PubMed  Google Scholar 

  • Buscot F (1993) Synthesis of two types of association between Morchella esculenta and Picea abies under controlled culture conditions. J Plant Physiol 141:12–17

    Article  CAS  Google Scholar 

  • Cameron TC, O'Sullivan D, Reynolds A, Piertney SB, Benton TG, Sorci G (2013) Eco-evolutionary dynamics in response to selection on life-history. Ecol Lett 16:754–763

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen YL, Chen BD, Hu YJ, Li T, Zhang X, Hao ZP, Wang YS (2013) Direct and indirect influence of arbuscular mycorrhizal fungi on abundance and community structure of ammonia oxidizing bacteria and archaea in soil microcosms. Pedobiologia 56:205–212

    Article  CAS  Google Scholar 

  • van der Heijden MG, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423

    Article  CAS  PubMed  Google Scholar 

  • Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, Hacquard S, Hervé V, Labbé J, Lastovetsky OA, Mieszkin S, Millet LJ, Vajna B, Junier P, Bonfante P, Krom BP, Olsson S, van Elsas JD, Wick LY (2018) Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev 42:335–352

    Article  PubMed  Google Scholar 

  • Drigo B, Pijl AS, Duyts H, Kielak AM, Gamper HA, Houtekamer MJ, Boschker HT, Bodelier PL, Whiteley AS, van Veen JA, Kowalchuk GA (2010) Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc Natl Acad Sci U S A 107:10938–10942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drigo B, Kowalchuk GA, Knaap BM, Pijl AS, Boschker TS, Veen JA (2013) Impacts of three years of elevated atmospheric CO2 on rhizosphere carbon flow and microbial community dynamics. Glob Chang Biol 19(2):621–636

    Article  PubMed  Google Scholar 

  • Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15:579–590

    Article  CAS  PubMed  Google Scholar 

  • Frey-Klett P, Garbaye J (2005) Mycorrhiza helper bacteria: a promising model for the genomic analysis of fungal-bacterial interactions. New Phytol 168:4–8

    Article  CAS  PubMed  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    Article  CAS  PubMed  Google Scholar 

  • Frey-Klett BP, Deveau A, Barret M, Tarkka M, Sarniguet A (2011) Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 75(4):583–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gui H, Hyde K, Xu J, Mortimer P (2017) Arbuscular mycorrhiza enhance the rate of litter decomposition while inhibiting soil microbial community development. Sci Rep 7:42184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannula SE, de Boer W, van Veen J (2012) A 3-Year Study Reveals That Plant Growth Stage, Season and Field Site Affect Soil Fungal Communities while Cultivar and GM-Trait Have Minor Effects. PLoS ONE 7(4):e33819. https://doi.org/10.1371/journal.pone.0033819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartman WH, Ye R, Horwath WR, Tringe SG (2017) A genomic perspective on stoichiometric regulation of soil carbon cycling. ISME J 11:2652–2665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrmann S, Grams TEE, Tarkka MT, Angay O, Bacht M, Bönn M, Feldhahn L, Graf M, Kurth F, Maboreke H, Mailander S, Recht S, Fleischmann F, Ruess L, Schädler M, Scheu S, Schrey S, Buscot F (2016) Endogenous rhythmic growth, a trait suitable for the study of interplays between multitrophic interactions and tree development. Perspect Plant Ecol Evol Systematics 19:40–48

    Article  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    Article  CAS  PubMed  Google Scholar 

  • Hodge A, Fitter AH (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci U S A 107:13754–13759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser C, Kilburn MR, Clode PL, Fuchslueger L, Koranda M, Cliff JB, Solaiman ZM, Murphy DV (2015) Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs. direct root exudation. New Phytol 205:1537–1551

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Kim D, Cho SW, Kim J, Kim JS (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24(6):1012–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koller R, Rodriguez A, Robin C, Scheu S, Bonkowski M (2013) Protozoa enhance foraging efficiency of arbuscular mycorrhizal fungi for mineral nitrogen from organic matter in soil to the benefit of host plants. New Phytol 199:203–211

    Article  CAS  PubMed  Google Scholar 

  • Marupakula S, Mahmood S, Jernberg J, Nallanchakravarthula S, Fahad ZA, Finlay RD (2017) Bacterial microbiomes of individual ectomycorrhizal Pinus sylvestris roots are shaped by soil horizon and differentially sensitive to nitrogen addition. Environ Microbiol 19:4736–4753

    Article  CAS  PubMed  Google Scholar 

  • Nurmiaho-Lassila EL, Timonen S, Haahtela K, Sen R (1997) Bacterial colonization patterns of intact Pinus sylvestris mycorrhizospheres in dry pine forest soil: an electron microscopy study. Can J Microbiol 43:1017–1035

    Article  CAS  Google Scholar 

  • Pent M, Hiltunen M, Põldmaa K, Furneaux B, Hildebrand F, Johannesson H, Ryberg M, Bahram M (2018) Host genetic variation strongly influences the microbiome structure and function in fungal fruiting-bodies. Environ Microbiol 20:1641–1650

    Article  CAS  PubMed  Google Scholar 

  • Rainey PB (1991) Effect of Pseudomonas putida on hyphal growth of Agaricus bisporus. Mycol Res 95:699–704

    Article  Google Scholar 

  • Rineau F, Roth D, Shah F, Smits M, Johansson T, Canbäck B, Olsen PB, Persson P, Grell MN, Lindquist E, Grigoriev IV, Lange L, Tunlid A (2012) The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown–rot mechanism involving Fenton chemistry. Environ Microbiol 14:1477–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvioli A, Ghignone S, Novero M, Navazio L, Venice F, Bagnaresi P, Bonfante P (2016) Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential. ISME J 10:130–144

    Article  CAS  PubMed  Google Scholar 

  • Schrey SD, Erkenbrack E, Früh E, Fengler S, Hommel K, Horlacher N, Schulz D, Ecke M, Kulik A, Fiedler HP, Hampp R, Tarkka MT (2012) Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza–associated streptomycetes. BMC Microbiol 12:164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Read DJ. 2008. Mycorrhizal symbiosis. 3rd edn. Academic Press

  • Stopnisek N, Zühlke D, Carlier A, Barberán A, Fierer N, Becher D, Riedel K, Eberl L, Weisskopf L (2016) Molecular mechanisms underlying the close association between soil Burkholderia and fungi. ISME J 10(1):253–264

    Article  CAS  PubMed  Google Scholar 

  • Svenningsen NB, Watts-Williams SJ, Joner EJ, Battini F, Efthymiou A, Cruz-Paredes C, Nybroe O, Jakobsen I (2018) Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota. ISME J 12:1296–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thirkell TJ, Charters M, Elliott A, Sait SM, Field KJ (2017) Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security. J Ecol 105:921–929

    Article  CAS  Google Scholar 

  • Tyc O, Song C, Dickschat JS, Vos M, Garbeva P (2017) The Ecological Role of Volatile and Soluble Secondary Metabolites Produced by Soil Bacteria. 25:280-292.

  • Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. 206:1196-1206

  • Vannini C, Carpentieri A, Salvioli A, Novero M, Marsoni M, Testa L, de Pinto MC, Amoresano A, Ortolani F, Bracale M, Bonfante P (2016) An interdomain network: the endobacterium of a mycorrhizal fungus promotes antioxidative responses in both fungal and plant hosts. New Phytol 211:265–275

    Article  CAS  PubMed  Google Scholar 

  • Vasiliauskas R, Menkis A, Finlay RD, Stenlid J (2007) Wood-decay fungi in fine living roots of conifer seedlings. New Phytol 174:441–446. https://doi.org/10.1111/j.1469-8137.2007.02014.x

    Article  CAS  PubMed  Google Scholar 

  • Warmink JA, Nazir R, van Elsas JD (2009) Universal and species-specific bacterial ‘fungiphiles’ in the mycospheres of different basidiomycetous fungi. Environ Microbiol 11(2):300–312

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mika T. Tarkka or Barbara Drigo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarkka, M.T., Drigo, B. & Deveau, A. Mycorrhizal microbiomes. Mycorrhiza 28, 403–409 (2018). https://doi.org/10.1007/s00572-018-0865-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-018-0865-5

Keywords

Navigation