Skip to main content
Log in

Arbuscular mycorrhizal fungus inoculation reduces the drought-resistance advantage of endophyte-infected versus endophyte-free Leymus chinensis

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Grasses can be infected simultaneously by endophytic fungi and arbuscular mycorrhizal (AM) fungi. In this study, we tested the hypothesis that endophyte-associated drought resistance of a native grass was affected by an AM fungus. In a greenhouse experiment, we compared the performance of endophyte-infected (EI) and endophyte-free (EF) Leymus chinensis, a dominant species native to the Inner Mongolia steppe, under altered water and AM fungus availability. The results showed that endophyte infection significantly increased drought resistance of the host grass, but the beneficial effects were reduced by AM fungus inoculation. In the mycorrhizal-non-inoculated (MF) treatment, EI plants accumulated significantly more biomass, had greater proline and total phenolic concentration, and lower malondialdehyde concentration than EF plants. In the mycorrhizal-inoculation (MI) treatment, however, no significant difference occurred in either growth or physiological characters measured between EI and EF plants. AM fungus inoculation enhanced drought resistance of EF plants but had no significant effect on drought resistance of EI plants, thus AM fungus inoculation reduced the difference between EI and EF plants. Our findings highlight the importance of interactions among multiple microorganisms for plant performance under drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Afkhami ME, Rudgers JA, Stachowicz JJ (2014) Multiple mutualist effects: conflict and synergy in multispecies mutualisms. Ecology 95:833–844

    Article  PubMed  Google Scholar 

  • Ahlholm JU, Helander M, Lehtimäki S, Wäli P, Saikkonen K (2002) Vertically transmitted fungal endophytes: different responses of host-parasite systems to environmental conditions. Oikos 99:173–183

    Article  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274

    Article  Google Scholar 

  • Assuero SG, Tognetti JA, Colabelli MR, Agnusdei MG, Petroni EC, Posse MA (2006) Endophyte infection accelerates morpho-physiological responses to water deficit in tall fescue. New Zeal J Agr Res 49:359–370

    Article  Google Scholar 

  • Bacon CW (1993) Abiotic stress tolerances (moisture, nutrients) and photosynthesis in endophyte-infected tall fescue. Agric Ecosyst Environ 44:123–141

    Article  Google Scholar 

  • Ball JP, Barker GM, Prestidge RA, Lauren DR (1997) Distribution and accumulation of the alkaloid peramine in Neotyphodium lolii-infected perennial ryegrass. J Chem Ecol 23:1419–1434

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bell-Dereske L, Takacs-Vesbach C, Kivlin SN, Emery SM, Rudgers JA (2017) Leaf endophytic fungus interacts with precipitation to alter belowground microbial communities in primary successional dunes. FEMS Microbiology Ecol 93

  • Brem D, Leuchtmann A (2002) Intraspecific competition of endophyte infected vs uninfected plants of two woodland grass species. Oikos 96:281–290

    Article  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Cheplick GP, Clay K, Marks S (1989) Interactions between infection by endophytic fungi and nutrient limitation in the grasses Lolium perenne and Festuca arundinacea. New Phytol 111:89–97

    Article  Google Scholar 

  • Chu-Chou M, Guo B, An ZQ, Hendrix JW, Ferriss RS, Siegel MR, Dougherty CT, Burrus PB (1992) Suppression of mycorrhizal fungi in fescue by the Acremonium coenophialum endophyte. Soil Biol Biochem 24:633–637

    Article  Google Scholar 

  • Clay K (1987) Effects of fungal endophytes on the seed and seedling biology of Lolium perenne and Festuca arundinacea. Oecologia 73:3583–3562

    Article  Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160(Suppl 4):S99S–S127

    Article  Google Scholar 

  • Crush JR, Popay AJ, Waller J (2004) Effect of different Neotyphodium endophytes on root distribution of a perennial ryegrass (Lolium perenne L.) cultivar. New Zeal J Agr Res 47:345–349

    Article  Google Scholar 

  • Elmi AA, West CP, Robbins RT, Kirkpatrick TL (2000) Endophyte effects on reproduction of a root-knot nematode (Meloidogyne marylandi) and osmotic adjustment in tall fescue. Grass Forage Sci 55:166–172

    Article  Google Scholar 

  • Faeth SH, Sullivan TJ (2003) Mutualistic asexual endophytes in native grass are usually parasitic. Am Nat 161:310–325

    Article  PubMed  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  • Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Huang WY, Cai YZ, Xing J, Corke H, Sun M (2007) A potential antioxidant resource: endophytic fungi from medicinal plants. Econ Bot 61:14–30

    Article  CAS  Google Scholar 

  • Iqbal J, Siegrist JA, Nelson JA, Mcculley RL (2012) Fungal endophyte infection increases carbon sequestration potential of southeastern USA tall fescue stands. Soil Biol Biochem 44:81–92

    Article  CAS  Google Scholar 

  • Kannadan S, Rudgers JA (2008) Endophyte symbiosis benefits a rare grass under low water availability. Funct Ecol 22:706–713

    Article  Google Scholar 

  • Kogel KH, Franken P, Hückelhoven R (2006) Endophyte or parasite—what decides? Curr Opin Plant Biol 9:358–363

    Article  PubMed  Google Scholar 

  • Larimer AL, Bever JD, Clay K (2010) The interactive effects of plant microbial symbionts: a review and meta-analysis. Symbiosis 51:139–148

    Article  Google Scholar 

  • Larimer AL, Bever JD, Clay K (2012) Consequences of simultaneous interactions of fungal endophytes and arbuscular mycorrhizal fungi with a shared host grass. Oikos 121:2090–2096

    Article  Google Scholar 

  • Latch GCM, Christensen MJ, Samuels GJ (1984) Five endophytes of Lolium and Festuca in New Zealand. Mycotaxon 167:338–342

    Google Scholar 

  • Lee BR, Muneer S, Jung WJ, Avice JC, Ourry A, Kim TH (2012) Mycorrhizal colonization alleviates drought-induced oxidative damage and lignification in the leaves of drought-stressed perennial ryegrass ( Lolium perenne ). Physiol Plantarum 145:440–449

    Article  CAS  Google Scholar 

  • Lewis GC (2004) Effects of biotic and abiotic stress on the growth of three genotypes of Lolium perenne with and without infection by the fungal endophyte Neotyphodium lolii. Ann Appl Biol 144:53–63

    Article  Google Scholar 

  • Liu Q, Parsons AJ, Xue H, Fraser K, Ryan GD, Newman JA, Rasmussen S (2011) Competition between foliar Neotyphodium lolii endophytes and mycorrhizal Glomus spp. fungi in Lolium perenne depends on resource supply and host carbohydrate content. Funct Ecol 25:910–920

    Article  Google Scholar 

  • Liu H, Chen W, Zhou Y, Li X, Ren AZ, Gao YB (2015) Effects of endophyte and arbuscular mycorrhizal fungi on growth of Leymus chinensis. Chinese J Plant Ecol 39:477–485

    Article  Google Scholar 

  • Mack KML, Rudgers JA (2008) Balancing multiple mutualists: asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytes. Oikos 117:310–320

    Article  Google Scholar 

  • Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940

    Article  CAS  Google Scholar 

  • Malinowski D, Leuchtmann A, Schmidt D, Nösberger J (1997) Growth and water status in meadow fescue is affected by Neotyphodium and Phialophora species endophytes. Agron J 89:673–678

    Article  Google Scholar 

  • Malinowski DP, Alloush GA, Belesky DP (1998) Evidence for chemical changes on the roots surface of tall fescue in response to infection with fungal endophyte Neotyphodium coenophialum. Plant Soil 205:1–12

    Article  CAS  Google Scholar 

  • Malinowski DP, Belesky DP, Lewis GC (2005) Abiotic stresses in endophytic grasses. In: Roberts CA, West CP, Spiers DE (eds) Neotyphodium in cool-season grasses. Blackwell Publishing, Ames, pp 187–199

    Chapter  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Miransari M (2009) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol 12:563–569

    Google Scholar 

  • Morse LJ, Day TA, Faeth SH (2002) Effect of Neotyphodium endophyte infection on growth and leaf gas exchange of Arizona fescue under contrasting water availability. Environ Exp Bot 48:257–268

    Article  Google Scholar 

  • Müller J (2003) Artificial infection by endophytes affects growth and mycorrhizal colonisation of Lolium perenne. Funct Plant Biol 30:419–424

    Article  Google Scholar 

  • Muller CB, Krauss J (2005) Symbiosis between grasses and asexual fungal endophytes. Curr Opin Plant Biol 8:450–456

    Article  PubMed  Google Scholar 

  • Nagabhyru P, Dinkins RD, Wood CL, Bacon CW, Schardl CL (2013) Tall fescue endophyte effects on tolerance to water-deficit stress. BMC Plant Biol 13:127

    Article  PubMed  PubMed Central  Google Scholar 

  • Novas MV, Cabral D, Godeas AM (2005) Interaction between grass endophytes and mycorrhizas in Bromus setifolius from Patagonia, Argentina. Symbiosis 40:23–30

    Google Scholar 

  • Omacini M, Eggers T, Bonkowski M, Gange AC, Jones TH (2006) Leaf endophytes affect mycorrhizal status and growth of co-infected and neighbouring plants. Funct Ecol 20:226–232

    Article  Google Scholar 

  • Pebriansyah A, Karti PDMH, Permana (2012) Role of arbuscula mycorrhizal fungi (AMF) in overcoming drought stress of several tropical grasses. Proceeding of the 2nd International Seminar on Animal Industry Jakarta, 5–6

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Ravel C, Balfourier F, Guillaumin JJ (1999) Enhancement of yield and persistence of perennial ryegrass inoculated with one endophyte isolate in France. Agronomie 19:635–644

    Article  Google Scholar 

  • Ren AZ, Gao YB, Zhou F (2007) Response of Neotyphodium lolii-infected perennial ryegrass to phosphorus deficiency. Plant Soil Environ 53:113–119

    CAS  Google Scholar 

  • Ren AZ, Li X, Han R, Yin LJ, Wei MY, Gao YB (2011) Benefits of a symbiotic association with endophytic fungi are subject to water and nutrient availability in Achnatherum sibiricum. Plant Soil 346:363–373

    Article  CAS  Google Scholar 

  • Ren AZ, Wei MY, Yin LJ, Wu LJ, Zhou Y, Li X, Gao YB (2014) Benefits of a fungal endophyte in Leymus chinensis depend more on water than on nutrient availability. Environ Exp Bot 108:71–78

    Article  CAS  Google Scholar 

  • Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmanek M (2000) Plant invasions—the role of mutualisms. Biol Rev Camb Philos Soc 75:65–93

    Article  CAS  PubMed  Google Scholar 

  • Rojas X, Guo JQ, Leff JW, McNear DH Jr, Noah F, McCulley RL (2016) Infection with a shoot-specific fungal endophyte (Epichloë) alters tall fescue soil microbial communities. Microb Ecol 72:197–206

    Article  CAS  PubMed  Google Scholar 

  • Rudgers JA, Clay K (2005) Fungal endophytes in terrestrial communities and ecosystems. In: Dighton EJ, Oudemans P, White JFJ (eds) The fungal community. M. Dekker, New York, pp 423–444

  • Rudgers JA, Swafford AL (2009) Benefits of a fungal endophyte in Elymus virginicus decline under drought stress. Basic Appl Ecol 10:43–51

    Article  Google Scholar 

  • Saikkonen K, Helander M, Faeth SH, Schulthess F, Wilson D (1999) Endophyte-grass-herbivore interactions: the case of Neotyphodium endophytes in Arizona fescue populations. Oecologia 121:411–420

    Article  CAS  PubMed  Google Scholar 

  • Saikkonen K, Lehtonen P, Helander M, Koricheva J, Faeth SH (2006) Model systems in ecology: dissecting the endophyte-grass literature. Trends Plant Sci 11:428–433

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal Symbiosis, third edn. Academic, London

    Google Scholar 

  • Stachowicz JJ (2001) Mutualisms, positive interactions, and the structure of ecological communities. Bioscience 51:235–246

    Article  Google Scholar 

  • Thrower LB, Lewis DH (1973) Uptake of sugars by Epichloë typhina (Pers. Ex Fr.) Tul. in culture and from its host, Agrostis stolonifera L. New Phytol 72:501–508

    Article  CAS  Google Scholar 

  • Vignale MV, Iannone LJ, Pinget AD, De Battista JP, Novas MV (2016) Effect of epichloid endophytes and soil fertilization on arbuscular mycorrhizal colonization of a wild grass. Plant Soil 405:279–287

    Article  CAS  Google Scholar 

  • Wang Q, Bao YY, Liu XW, Du GX (2014) Spatio-temporal dynamics of arbuscular mycorrhizal fungi associated with glomalin-related soil protein and soil enzymes in different managed semiarid steppes. Mycorrhiza 24:525–538

    Article  CAS  PubMed  Google Scholar 

  • Wei MK, Gao YB, Xu H, Su D, Zhang X, Wang YH, Lin F, Chen L, Nie LY, Ren AZ (2006) Occurrence of endophytes in grasses native to northern China. Grass Forage Sci 61:422–429

    Article  Google Scholar 

  • Wei C, Yu Q, Bai E, Lü X, Li Q, Xia J, Kardol P, Liang W, Wang Z, Han XG (2013) Nitrogen deposition weakens plant–microbe interactions in grassland ecosystems. Glob Chang Biol 19:3688–3697

    Article  PubMed  Google Scholar 

  • White JF, Torres MS (2010) Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiol Plant 138:440–446

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Ma S, Dai CC (2014) Drought degree constrains the beneficial effects of a fungal endophyte on Atractylodes lancea. J Appl Microbiol 117:1435–1449

    Article  CAS  PubMed  Google Scholar 

  • Zhang YP, Nan ZB (2007) Growth and anti-oxidative systems changes in Elymus dahuricus is affected by Neotyphodium endophyte under contrasting water availability. J Agron Crop Sci 193:377–386

    Article  CAS  Google Scholar 

  • Zhang YF, Wang P, Yang YF, Bi Q, Tian SY, Shi XW (2011) Arbuscular mycorrhizal fungi improve reestablishment of Leymus chinensis in bare saline-alkaline soil: implication on vegetation restoration of extremely degraded land. J Arid Environ 75:773–778

    Article  Google Scholar 

  • Zhang HY, Yu Q, Lü XT, Trumbore SE, Yang JJ, Han XG (2016) Impacts of leguminous shrub encroachment on neighboring grasses include transfer of fixed nitrogen. Oecologia 180:1213–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhen LN, Yang GW, Yang HJ, Chen YL, Liu N, Zhang YJ (2014) Arbuscular mycorrhizal fungi affect seedling recruitment: a potential mechanism by which N deposition favors the dominance of grasses over forbs. Plant Soil 375:127–136

    Article  CAS  Google Scholar 

  • Zhu MJ, Ren AZ, Wen W, Gao YB (2013) Diversity and taxonomy of endophytes from Leymus chinensis in the Inner Mongolia steppe of China. FEMS Microbiol Lett 340:135–145

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the National key research and development program (2016YFC0500702) and the National Natural Science Foundation (31570433) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anzhi Ren.

Electronic supplementary material

ESM 1

(DOCX 16 kb)

ESM 2

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Chen, W., Wu, M. et al. Arbuscular mycorrhizal fungus inoculation reduces the drought-resistance advantage of endophyte-infected versus endophyte-free Leymus chinensis . Mycorrhiza 27, 791–799 (2017). https://doi.org/10.1007/s00572-017-0794-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-017-0794-8

Keywords

Navigation