Skip to main content

Advertisement

Log in

Effect of environmental gradient in coastal vegetation on communities of arbuscular mycorrhizal fungi associated with Ixeris repens (Asteraceae)

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The community structure of arbuscular mycorrhizal (AM) fungi associated with Ixeris repens was studied in coastal vegetation near the Tottori sand dunes in Japan. I. repens produces roots from a subterranean stem growing near the soil surface which provides an opportunity to examine the effects of an environmental gradient related to distance from the sea on AM fungal communities at a regular soil depth. Based on partial sequences of the nuclear large subunit ribosomal RNA gene, AM fungi in root samples were divided into 17 phylotypes. Among these, five AM fungal phylotypes in Glomus and Diversispora were dominant near the seaward forefront of the vegetation. Redundancy analysis of the AM fungal community showed significant relationships between the distribution of phylotypes and environmental variables such as distance from the sea, water-soluble sodium in soil, and some coexisting plant species. These results suggest that environmental gradients in the coastal vegetation can be determinants of the AM fungal community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abe JP, Katsuya K (1995) Vesicular-arbuscular mycorrhizal fungi in coastal dune plant communities II. Spore formation of Glomus spp. Predominates under geographically separated patches of Elymus mollis. Mycoscience 36:1113–1116

    Article  Google Scholar 

  • Abe JP, Masuhara G, Katsuya K (1994) Vesicular-arbuscular mycorrhizal fungi in coastal dune plant communities. I. Spore formation of Glomus spp. Predominates under a patch of Elymus mollis. Mycoscience 35:233–238

    Article  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • An GH, Miyakawa S, Kawahara A, Osaki M, Ezawa T (2008) Community structure of arbuscular mycorrhizal fungi associated with pioneer grass species Miscanthus sinensis in acid sulphate soils: habitat segregation along pH gradients. Soil Sci Plant Nutr 54:517–528

    Article  Google Scholar 

  • Beena KR, Raviraja NS, Arun AB, Sridhar KR (2000) Diversity of arbuscular mycorrhizal fungi on the coastal sand dunes of the west coast of India. Curr Sci 79:1459–1466

    CAS  Google Scholar 

  • Beena KR, Arun AB, Raviraja NS, Sridhar KR (2001) Association of arbuscular mycorrhizal fungi with plants of coastal sand dunes of west coast of India. Trop Ecol 42:213–222

    Google Scholar 

  • Błaszkowski J, Czerniawska B (2008) Glomus irregulare, a new arbuscular mycorrhizal fungus in the Glomeromycota. Mycotaxon 106:247–267

    Google Scholar 

  • Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. Australian Centre for International Agriculture Research, Canberra

    Google Scholar 

  • Carvalho LM, Correia PM, Martins-Loução MA (2004) Arbuscular mycorrhizal fungal propagules in a salt marsh. Mycorrhiza 14:165–170

    Article  PubMed  Google Scholar 

  • Dandan Z, Zhiwei Z (2007) Biodiversity of arbuscular mycorrhizal fungi in the hot-dry valley of the Jinsha River, southwest China. Appl Soil Ecol 37:118–128

    Article  Google Scholar 

  • Dixon RK, Garg VK, Rao MV (1993) Inoculation of Leucaena and Prosopis seedlings with Glomus and Rhizobium species in saline soil: rhizosphere relations and seedlings growth. Arid Soil Res Rehabil 7:133–144

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Ferrol N, Calvente R, Cano C, Barea JM, Azcón-Aguilar C (2004) Analysing arbuscular mycorrhizal fungal diversity in shrub-associated resource islands from a desertification-threatened semiarid Mediterranean ecosystem. Appl Soil Ecol 25:123–133

    Article  Google Scholar 

  • Funatsu Y, Nakatsubo T, Yamaguchi O, Horikoshi T (2005) Effects of arbuscular mycorrhizae on the establishment of the alien plant Oenothera laciniata (Onagraceae) on a Japanese coastal sand dune. J Coastal Res 21:1054–1061

    Article  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  PubMed  CAS  Google Scholar 

  • Hooland SM (2003) Analytic Rarefaction 1.3. User’s Guide and Application. http://strata.uga.edu/software/anRareReadme.html. Accessed 10 Jan 2011

  • Kitamura S, Murata G, Koyama T (2002) Colored illustrations of herbaceous plants of Japan, vol1 (Sympetalae) 58th edn. Hoikusha, Osaka, Japan

  • Koske RE (1975) Endogone spores in Australian sand dunes. Can J Bot 53:668–672

    Article  Google Scholar 

  • Koske RE, Gemma JN (1995) Scutellospora hawaiiensis: a new species of arbuscular mycorrhizal fungus from Hawaii. Mycologia 87:678–683

    Article  Google Scholar 

  • Koske RE, Halvorson WL (1981) Ecological studies of vesicular-arbuscular mycorrhizae in a barrier sand dune. Can J Bot 59:1413–1422

    Article  Google Scholar 

  • Koske RE, Walker C (1986a) Glomus globiferum: a new species of endogonaceae with a hyphal peridium. Mycotaxon 26:133–142

    Google Scholar 

  • Koske RE, Walker C (1986b) Scutellospora (Endogonaceae) with smooth-walled spores from maritime sand dunes: two new species and a redescription of the spores of Scutellospora pellucida and Scutellospora calospora. Mycotaxon 27:219–235

    Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Öpik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94:778–790

    Article  Google Scholar 

  • Page RDM (1996) An application to display phylogenetic trees on personal computers. Comp Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Redecker D, Raab P, Oehl F, Camacho FJ, Courtecuisse R (2007) A novel clade of sporocarp-forming species of glomeromycotan fungi in the Diversisporales lineage. Mycol Progress 6:35–44

    Article  Google Scholar 

  • Requena N, Jeffries P, Barea JM (1996) Assessment of natural mycorrhizal potential in a desertified semiarid ecosystem. Appl Environ Microbiol 62:842–847

    PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:404–425

    Google Scholar 

  • Sanders IR (2002) Specificity in the arbuscular mycorrhizal symbiosis. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Heidelberg, pp 415–437

    Google Scholar 

  • Schenck NC, Smith GS (1982) Additional new unreported species of mycorrhizal fungi (Endogonaceae) from Florida. Mycologia 77:566–574

    Google Scholar 

  • Schüßler A, Walker C (2010) The Glomeromycota: a species list with new families and new genera. Schüßler A, Walker C, Gloucester. Libraries at Royal Botanic Garden Edinburgh, Kew, Botanische Staatssammlung Munich, and Oregon State University. http://www.amf-phylogeny.com. Accessed 9 May 2011

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with pre-treated mycorrhizal fungi. J Plant Physiol 164:1144–1151

    Article  PubMed  CAS  Google Scholar 

  • Sridhar KR, Beena KR (2001) Arbuscular mycorrhizal research in coastal sand dunes: a review. Proc Natl Acad Sci India 121:179–205

    Google Scholar 

  • Stockinger H, Walker C, Schler A (2009) ‘Glomus intraradices DAOM197198’ a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices. New Phytol 183:1176–1187

    Article  PubMed  Google Scholar 

  • Sylvia DM (1986) Spatial and temporal distribution of vesicular-arbuscular mycorrhizal fungi associated with Uniola paniculata in Florida foredunes. Mycologia 78:728–734

    Article  Google Scholar 

  • ter Braak CFJ, Smilauer P (2002) CANOCO Reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Biometris, Wageningen

  • Trappe JM, Bloss HE, Menge JA (1984) Glomus deserticola sp. nov. Mycotaxon 20:123–127

    Google Scholar 

  • Trouvelot S, van Tuinen D, Hijri M, Gianinazzi-Pearson V (1999) Visualization of ribosomal DNA loci in spore interphasic nuclei of glomalean fungi by fluorescence in situ hybridization. Mycologia 8:203–206

    CAS  Google Scholar 

  • Truog E (1930) The determination of the readily available phosphorus of soils. J Am Soc Agron 22:874–882

    Article  CAS  Google Scholar 

  • van Tuinen D, Jacquot E, Zhao B, Gollotte A, Gianinazzi-Pearson V (1998) Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Mol Ecol 7:879–887

    Article  PubMed  Google Scholar 

  • Walker C, Giovannetti M, Avio L, Citernesi AS, Nicolson TH (1995) A new fungal species forming arbuscular mycorrhizas: Glomus viscosum. Mycol Res 99:1500–1506

    Article  Google Scholar 

  • Yamato M, Ikeda S, Iwase K (2008) Community of arbuscular mycorrhizal fungi in coastal vegetation on Okinawa Island and effect of the isolated fungi on growth of sorghum under salt-treated conditions. Mycorrhiza 18:241–249

    Article  PubMed  Google Scholar 

  • Yamato M, Ikeda S, Iwase K (2009) Community of arbuscular mycorrhizal fungi in drought-resistant plants, Moringa spp., in semiarid regions in Madagascar and Uganda. Mycoscience 50:100–105

    Article  CAS  Google Scholar 

  • Zuccarini P, Okurowska P (2008) Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J Plant Nutr 31:497–513

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Arid Land Research Center, Tottori University for permitting us to collect plant samples. We also thank the members of the laboratory of Dr. Satoshi Yamada at Tottori University for instructing us on using the atomic absorption spectrophotometer. This study was supported by the Global COE Program “Advanced utilization of fungus/mushroom resources for sustainable society in harmony with nature” from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahide Yamato.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(XLSX 13 kb)

Table S2

(XLSX 14 kb)

Table S3

(XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamato, M., Yagame, T., Yoshimura, Y. et al. Effect of environmental gradient in coastal vegetation on communities of arbuscular mycorrhizal fungi associated with Ixeris repens (Asteraceae). Mycorrhiza 22, 623–630 (2012). https://doi.org/10.1007/s00572-012-0439-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-012-0439-x

Keywords

Navigation