Skip to main content
Log in

Effect of competitive interactions between ectomycorrhizal and saprotrophic fungi on Castanea sativa performance

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

In Northeast of Portugal, the macrofungal community associated to chestnut tree (Castanea sativa Mill.) is rich and diversified. Among fungal species, the ectomycorrhizal Pisolithus tinctorius and the saprotroph Hypholoma fasciculare are common in this habitat. The aim of the present work was to assess the effect of the interaction between both fungi on growth, nutritional status, and physiology of C. sativa seedlings. In pot experiments, C. sativa seedlings were inoculated with P. tinctorius and H. fasciculare individually or in combination. Inoculation with P. tinctorius stimulated the plant growth and resulted in increased foliar-N, foliar-P, and photosynthetic pigment contents. These effects were suppressed when H. fasciculare was simultaneously applied with P. tinctorius. This result could be related to the inhibition of ectomycorrhizal fungus root colonization as a result of antagonism or to the competition for nutrient sources. If chestnut seedlings have been previously inoculated with P. tinctorius, the subsequent inoculation of H. fasciculare 30 days later did not affect root colonization, and mycorrhization benefits were observed. This work confirms an antagonistic interaction between ectomycorrhizal and saprotrophic fungi with consequences on the ectomycorrhizal host physiology. Although P. tinctorius is effective in promoting growth of host trees by establishing mycorrhizae, in the presence of other fungi, it may not always be able to interact with host roots due to an inability to compete with certain fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alberdi M, Álvarez M, Valenzuela E, Godoy R, Olivares E, Barrrientos M (2007) Response to water deficit of Nothofagus dombeyi plants inoculated with a specific (Descolea antarctica Sing) and non-specific (Pisolithus tinctorius (Pers.) Coker & Couch) ectomycorrhizal fungi. Rev Chil Hist Nat 80:479–491

    Google Scholar 

  • Allen MF, Smith WK, Moore TS, Christensen M (1981) Comparative water relations and photosynthesis of mycorrhizal Bouteloua gracilis H.B.K. lag ex Steud. New Phytol 88:683–693

    Article  Google Scholar 

  • Alvarez M, Huygens D, Fernandez C, Gacitúa Y, Olivares E, Saavedra I, Alberdi M, Valenzuela E (2009) Effect of ectomycorrhizal colonization and drought on reactive oxygen species metabolism of Nothofagus dombeyi roots. Tree Physiol 29:1047–1057

    Article  PubMed  CAS  Google Scholar 

  • AOAC (Association of Official Analytical Chemist) (1990) Official methods of analysis, 15th edn. AOAC, Gaithersburg

    Google Scholar 

  • Atkinson D (1994) Impact of mycorrhizal colonization on root architecture, root longevity and the formation of growth regulators. In: Gianinazzi S et al (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystem. Birkhäuser, Basel, pp 89–99

    Chapter  Google Scholar 

  • Augé RM (2004) Arbuscular mycorrhizae and soil/plant water relations. Can J Soil Sci 84:373–381

    Article  Google Scholar 

  • Augé RM, Stodola AJW, Tims JE, Saxton AM (2001) Moisture retention properties of a mycorrhizal soil. Plant Soil 230:87–97

    Article  Google Scholar 

  • Baar J, Stanton NL (2000) Ectomycorrhizal fungi challenged by saprotrophic basidiomycetes and soil microfungi under different ammonium regimes in vitro. Mycol Res 104:691–697

    Article  Google Scholar 

  • Baptista P, Martins A, Tavares RM, Lino-Neto T (2010) Diversity and fruiting pattern of macrofungi associated with chestnut tree (Castanea sativa Mill.) in the Trás-os-Montes region (Northeast Portugal). Fungal Ecol 3:9–19

    Article  Google Scholar 

  • Boddy L (2000) Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiol Ecol 31:185–194

    Article  PubMed  CAS  Google Scholar 

  • Brundrett M, Bougher N, Dell B et al (1996) Working with mycorrhizas in forestry and agriculture. Australian Centre for International Agricultural Research Monograph 32, Canberra

  • Bryla DR, Duniway JM (1997) Growth, phosphorus uptake, and water relations of safflower and wheat infected with an arbuscular mycorrhizal fungus. New Phytol 136:581–590

    Article  Google Scholar 

  • Cairney WG, Chambers SM (1997) Interactions between Pisolithus tinctorius and its hosts: a review of current knowledge. Mycorrhiza 7:117–131

    Article  Google Scholar 

  • Cairney JWG, Chambers SM (1999) Ectomycorrhizal fungi-key genera in profile. Springer, Berlin

    Google Scholar 

  • Chen L, Zeng J, Xu DP, Zhao ZG, Guo JJ (2010) Macronutrient deficiency in symptoms Betula alnoides seedlings. J Trop For Sci 22:403–413

    Google Scholar 

  • Davies FT, Potter JR, Linderman RG (1993) Drought resistance of mycorrhizal pepper plants independent of leaf P-concentration—response in gas exchange and water relations. Physiol Plant 87:45–53

    Article  CAS  Google Scholar 

  • Demur S (2004) Influence of arbuscular mycorrhiza on some physiological growth parameters of pepper. Turk J Biol 28:85–90

    Google Scholar 

  • Dighton J (2007) Nutrient cycling by saprotrophic fungi in terrestrial habitats. In: Kubicek CP, Druzhinina IS (eds) The Mycota IV environmental and microbial relationships, 2nd edn. Springer, Berlin, pp 287–300

    Google Scholar 

  • Edda S, Oddsdottir ES, Eilenberg J, Sen R, Halldorsson G (2010) The effects of insect pathogenic soil fungi and ectomycorrhizal inoculation of birch seedlings on the survival of Otiorhynchus larvae. Agric For Entomol 12:319–324

    Google Scholar 

  • El-Shatnawi MKJ, Makhadmeh IM (2001) Ecophysiology of plant-rhizosphere system. J Agron Crop Sci 187:1–9

    Article  Google Scholar 

  • Harris RW (1992) Root-shoot ratios. J Arboric 18:39–42

    Google Scholar 

  • Huang Y, Tao S (2004) Influences of excessive Cu on photosynthesis and growth in ectomycorrhizal Pinus sylvestris seedlings. J Environ Sci 16:414–419

    CAS  Google Scholar 

  • Jackson ML (1973) Soil chemical analysis. Prentice Hall, New Delhi

    Google Scholar 

  • Jacobsen I (1991) Carbon metabolism in mycorrhiza. In: Burrock H, Mosser J (eds) Methods in microbiology. Academic, New York, pp 149–180

    Google Scholar 

  • Jones MD, Durall DM, Tinker PB (1991) Fluxes of carbon and phosphorus between symbionts in willow ectomycorrhizas and their changes with time. New Phytol 119:99–106

    Article  CAS  Google Scholar 

  • Jones MD, Durall DM, Tinker PB (1998) Comparison of arbuscular and ectomycorrhizal Eucalyptus coccifera: growth response, phosphorus uptake efficiency and external hyphal production. New Phytol 140:125–134

    Article  Google Scholar 

  • Koide RT, Kabir Z (2000) Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytol 148:511–517

    Article  CAS  Google Scholar 

  • Koide RT, Kabir Z (2001) Nutrient economy of red pine is affected by interactions between Pisolithus tinctorius and other forest-floor microbes. New Phytol 150:179–188

    Google Scholar 

  • Leake JR, Donnelly DP, Saunders EM, Boddy L, Read DJ (2001) Rates and quantities of carbon flux to ectomycorrhizal mycelium following 14 C pulse labeling of Pinus sylvestris seedlings: effects of litter patches and interaction with a wood-decomposer fungus. Tree Physiol 21:71–82

    PubMed  CAS  Google Scholar 

  • Leake JR, Donnelly DP, Boddy L (2002) Interactions between ectomycorrhizal and saprotrophic fungi. In: Van de Heijden MGA, Sanders I (eds) Mycorrhizal ecology, ecological studies, vol. 157. Springer, Berlin, pp 346–373

    Google Scholar 

  • Lehto T, Zwiazek JJ (2011) Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 21:71–90

    Article  PubMed  Google Scholar 

  • Lindahl B, Stenlid J, Olsson S, Finlay R (1999) Translocation of 32P between interacting mycelia of a wood decomposing fungus and ectomycorrhizal fungi in microcosm systems. New Phytol 144:183–193

    Article  CAS  Google Scholar 

  • Lindahl B, Stenlid J, Finlay RD (2001) Effects of resource availability on mycelial interactions and 32P transfer between a saprotrophic and an ectomycorrhizal fungus in soil microcosms. FEMS Microbiol Ecol 38:43–52

    Article  CAS  Google Scholar 

  • Lindahl B, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620

    Article  PubMed  CAS  Google Scholar 

  • Liu YQ, Sun XY, Wang Y, Liu Y (2007) Effects of shades on the photosynthetic characteristics and chlorophyll fluorescence parameters of Urtica dioica. Acta Ecologica Sinica 27:3457–3464

    Google Scholar 

  • Mari S, Jonsson A, Finlay R, Ericsson T, Kähr M, Eriksson G (2003) Genetic variation in nitrogen uptake and growth in mycorrhizal and nonmycorrhizal Picea abies (L.) Karst. seedlings. For Sci 49:258–267

    Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    CAS  Google Scholar 

  • Martins A (2004) Micorrização controlada de Castanea sativa Mill.: aspectos fisiológicos da micorrização in vitro e ex vitro. Tese de Doutoramento, Faculdade de Ciências da Universidade de Lisboa, Lisboa

  • Martins A, Casimiro A, Pais MMS (1997) Influence of mycorrhization on physiological parameters of micropropagated Castanea sativa Mill. plants. Mycorrhiza 7:161–165

    Article  CAS  Google Scholar 

  • Mucha J, Dahm H, Strzelczyk E, Werner A (2006) Synthesis of enzymes connected with mycoparasitism by ectomycorrhizal fungi. Arch Microbiol 185:69–77

    Article  PubMed  CAS  Google Scholar 

  • Ozerol NH, Titus JF (1965) The determination of total chlorophyll in methanol extracts. Trans Ill State Acad Sci 58:15–19

    Google Scholar 

  • Padilla IMG, Encina CL (2005) Changes in root morphology accompanying mycorrhizal alleviation of phosphorus deficiency in micropropagated Annona cherimola Mill. Plants Sci Hortic 106:360–369

    Article  CAS  Google Scholar 

  • Rousseau JVD, Sylvia DM, Fox AJ (1994) Contribution of ectomycorrhiza to the potential nutrient-absorbing surface of pine. New Phytol 128:639–644

    Article  Google Scholar 

  • Sharma R, Rajak RC, Pandey AK (2010) Evidence of antagonistic interactions between rhizosphere and mycorrhizal fungi associated with Dendrocalamus strictus (Bamboo). J Yeast Fungal Res 1:112–117

    Google Scholar 

  • Shaw TM, Dighton J, Sanders FE (1995) Interactions between ectomycorrhizal and saprotrophic fungi on agar and in association with seedlings of lodgepole pine (Pinus contorta). Mycol Res 99:159–165

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, San Diego

    Google Scholar 

  • Sun Y, Gu J-C, Zhuang H-F, Wang Z-Q (2010) Effects of ectomycorrhizal colonization and nitrogen fertilization on morphology of root tips in a Larix gmelinii plantation in northeastern China. Ecol Res 25:295–302

    Article  Google Scholar 

  • Thomson BD, Grove TS, Malajczuk N, Hardy GE, St J (1994) The effectiveness of ectomycorrhizal fungi in increasing the growth of Eucalyptus globulus Labill. in relation to root colonization and hyphal development in soil. New Phytol 126:517–524

    Article  Google Scholar 

  • Timonen S, Finlay RD, Olsson S, Söderström B (1996) Dynamics of phosphorus translocation in intact ectomycorrhizal systems: non-destructive monitoring using a beta-scanner. FEMS Microbiol Ecol 19:171–180

    CAS  Google Scholar 

  • Turjaman M, Tamai Y, Segah H, Limin SH, Cha JY, Osaki M, Tawaraya K (2005) Inoculation with the ectomycorrhizal fungi Pisolithus arhizus and Scleroderma sp. improves early growth of Shorea pinanga nursery seedlings. New For 30:167–173

    Article  Google Scholar 

  • Vodnik D, Gogala N (1994) Seasonal fluctuations of photosynthesis and its pigments in 1-year mycorrhized spruce seedlings. Mycorrhiza 4:277–281

    Article  Google Scholar 

  • Wang Y, Li G, Zhang L, Fan J (2011) Retrieval of leaf water content of winter wheat from canopy spectral reflectance data using a position index (λmin) derived from the 1200 nm absorption band. Remote Sens Lett 2:31–40

    Article  Google Scholar 

  • Werner A, Zadworny M (2003) In vitro evidence of mycoparasitism of the ectomycorrhizal fungus Laccaria laccata against Mucor hiemalis in the rhizosphere of Pinus sylvestris. Mycorrhiza 13:41–47

    Article  PubMed  Google Scholar 

  • Werner A, Zadworny M, Idzikowska K (2002) Interaction between Laccaria laccata and Trichoderma virens in co-culture and in the rhizosphere of Pinus sylvestris grown in vitro. Mycorrhiza 12:139–145

    Article  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PRC protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Wright DP, Scholes JD, Read DJ (1998) Effects of VAM colonization on photosynthesis and biomass production of Trifolium repens L. Plant Cell Environ 21:209–216

    Article  Google Scholar 

  • Wu B, Watanabe I, Hayatsu M, Nioh I (1998) Effect of ectomycorrhizae on the growth and uptake and transport of 15 N-labeled compounds by Pinus tabulaeformis seedlings under water-stressed conditions. Biol Fertil Soils 28:136–138

    Article  Google Scholar 

  • Wu T, Sharda JN, Koide RT (2003) Exploring interactions between saprotrophic microbes and ectomycorrhizal fungi using a protein–tannin complex as an N source by red pine (Pinus resinosa). New Phytol 159:131–139

    Article  CAS  Google Scholar 

  • Wu T, Kabir Z, Koide RT (2005) A possible role for saprotrophic microfungi in the N nutrition of ectomycorrhizal Pinus resinosa. Soil Biol Biochem 37:965–975

    Article  CAS  Google Scholar 

  • Zadworny M, Werner A, Idzikowska K (2004) Behaviour of the hyphae of Laccaria laccata in the presence of Trichoderma harzianum in vitro. Mycorrhiza 14:401–405

    Article  PubMed  Google Scholar 

  • Zuccarini P (2007) Mycorrhizal infection ameliorates chlorophyll content and nutrient uptake of lettuce exposed to saline irrigation. Plant Soil Environ 53:283–289

    CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Fundação para a Ciência e Tecnologia (FCT) for financial support (project PTDC/AGR-AAM/099556/2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Baptista.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, E., Coelho, V., Tavares, R.M. et al. Effect of competitive interactions between ectomycorrhizal and saprotrophic fungi on Castanea sativa performance. Mycorrhiza 22, 41–49 (2012). https://doi.org/10.1007/s00572-011-0379-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-011-0379-x

Keywords

Navigation