Skip to main content
Log in

AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect

  • Short Note
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Although mycorrhizal colonization provides a bioprotectional effect against a broad range of soil-borne pathogens, including plant parasitic nematodes, the commercial use of arbuscular mycorrhizal fungi (AMF) as biocontrol agents is still in its infancy. One of the main reasons is the poor understanding of the modes of action. Most AMF mode of action studies focused on AMF-bacterial/fungal pathogens. Only few studies so far examined AMF–plant parasitic nematode interactions. Therefore, the aim of the study was to determine whether the AMF Glomus intraradices was able to incite systemic resistance in banana plants towards Radopholus similis and Pratylenchus coffeae, two plant parasitic nematodes using a split-root compartmental set-up. The AMF reduced both nematode species by more than 50%, even when the AMF and the plant parasitic nematodes were spatially separated. The results obtained demonstrate for the first time that AMF have the ability to induce systemic resistance against plant parasitic nematodes in a root system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Bakker PAHM, Pieterse CMJ, Van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243

    Article  PubMed  Google Scholar 

  • Banerjee N, De Langhe E (1985) A tissue culture technique for rapid clonal propagation and storage under minimal growth conditions of Musa (banana and plantain). Plant Cell Rep 4:351–354

    Article  CAS  PubMed  Google Scholar 

  • Borowicz VA (2001) Do arbuscular mycorrhizal fungi alter plant-pathogen relations. Ecology 82:3057–3068

    Google Scholar 

  • Catford JG, Staehelin C, Lerat S, Piché Y, Vierheilig H (2003) Suppression of arbuscular mycorrhizal colonization and nodulation in split-root systems of alfalfa after pre-inoculation and treatment with Nod factors. J Exp Bot 54:1481–1487

    Article  CAS  PubMed  Google Scholar 

  • Catford JG, Staehelin C, Larose G, Piché Y, Vierheilig H (2006) Systemically suppressed isoflavonoids and their stimulating effects on nodulation and mycorrhization in alfalfa split-root systems. Plant Soil 285:257–266

    Article  CAS  Google Scholar 

  • Cordier C, Pozo MJ, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (1998) Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant Microbe In 11:1017–1028

    Article  CAS  Google Scholar 

  • de la Peña E, Rodriguez-Echevarria S, van der Putten WH, Freitas H, Moens M (2006) Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria. New Phytol 169:829–840

    Article  PubMed  Google Scholar 

  • Declerck S, Plenchette C, Strullu DG (1995) Mycorrhizal dependency of banana (Musa acuminata, AAA group) cultivars. Plant Soil 176:183–187

    Article  CAS  Google Scholar 

  • Dehne HW (1982) Interactions between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathology 72:1115–1119

    Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  • Elsen A, Baimey H, Swennen R, De Waele D (2003a) Relative mycorrhizal dependency and mycorrhiza-nematode interaction in banana cultivars (Musa spp.) differing in nematode susceptibility. Plant Soil 256:303–313

    Article  CAS  Google Scholar 

  • Elsen A, Beeterens R, Swennen R, De Waele D (2003b) Effects of an arbuscular mycorrhizal fungus and two plant-parasitic nematodes in Musa genotypes differing in root morphology. Biol Fert Soils 38:367–376

    Article  Google Scholar 

  • Fritz M, Jakobsen I, Lyngkjaer MF, Thordal-Christensen H, Pons-Kühnemann J (2006) Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani. Mycorrhiza 16:413–419

    Article  PubMed  Google Scholar 

  • Gianinazzi-Pearson V, Dumas-Gaudot E, Golotte A, Tahiri-Alaoui A, Gianinazzi S (1996) Cellular and molecular defense-related root responses to invasion by arbuscular mycorrhizal fungi. New Phytol 133:45–57

    Article  Google Scholar 

  • Gowen SR, Quénéhervé P, Fogain R (2005) Nematode parasites of bananas and plantains. In: Luc M, Sikora R, Bridge J (eds) Plant parasitic nematodes in subtropical and tropical agriculture, 2nd edn. CABI Publishing, Wallingford, pp 611–643

    Chapter  Google Scholar 

  • Graham JH, Drouillard DL, Hodge NC (1996) Carbon economy of sour orange in response to different Glomus spp. Tree Physiol 16:1023–1029

    Article  PubMed  Google Scholar 

  • Hasky-Günther K, Hoffmann-Hergarten S, Sikora RA (1998) Resistance against potato cyst nematode Globodera pallida systemically induced by the rhizobacteria Agrobacterium radiobacter (G12) and Bacillus sphaericus (B43). Fund Appl Nematol 21:511–517

    Google Scholar 

  • Hol GWH, Cook R (2005) An overview of arbuscular mycorrhizal fungi-nematode interactions. Basic Appl Ecol 6:489–503

    Article  Google Scholar 

  • Hooper DJ, Hallman J, Subbotin S (2005) Methods for extraction, processing and detection of plant and soil nematodes. In: Luc M, Sikora R, Bridge J (eds) Plant parasitic nematodes in subtropical and tropical agriculture, 2nd edn. CABI Publishing, Wallingford, pp 53–86

    Chapter  Google Scholar 

  • Li HY, Yang GD, Shu HR, Yang YT, Ye BX, Nishida I, Zheng CC (2006) Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the class III chitinase gene VCH3. Plant Cell Physiol 47:154–163

    Article  CAS  PubMed  Google Scholar 

  • Khaosaad T, Garcia-Garrido JM, Steinkellner S, Vierheilig H (2007) Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biol Biochem 39:727–734

    Article  CAS  Google Scholar 

  • Knoester M, Pieterse CMJ, Bol JF, Van Loon LC (1999) Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application. Mol Plant Microbe In 12:720–727

    Article  CAS  Google Scholar 

  • Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544

    Article  CAS  PubMed  Google Scholar 

  • Munif A, Hallman J, Sikora RA (2001) Induced systemic resistance of selected endophytic bacteria against Meloidogyne incognita on tomato. Med Fac Landbouww Univ Gent 66:663–669

    CAS  Google Scholar 

  • Paulitz TC, Bélanger RR (2001) Biological control in greenhouse systems. Annu Rev Phytopathol 39:303–308

    Article  Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Hoffland E, Van Pelt JA, Van Loon LC (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Van Pelt JA, Knoester M, Laan R, Gerris H, Weisbeek PJ, Van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinochet J, Fernandez C, Sarah JL (1995) Influence of temperature on in vitro reproduction of Pratylenchus coffeae, P. goodeyi and Radopholus similis. Fund Appl Nematol 18:391–392

    Google Scholar 

  • Pinochet J, Calvet C, Camprubi A, Fernandez C (1996) Interactions between migratory endoparasitic nematodes and arbuscular mycorrhizal fungi in perennial crops: a review. Plant Soil 185:183–190

    Article  CAS  Google Scholar 

  • Plenchette C, Morel C (1996) External phosphorus requirements of mycorrhizal and non-mycorrhial barley and soybean plants. Biol Fert Soils 21:303–308

    Article  Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcon-Aguilar C (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defense responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534

    Article  CAS  PubMed  Google Scholar 

  • Sena JOA, Labate CA, Cardoso EJBN (2004) Physiological characterization of growth depression in arbuscular mycorrhizal citrus seedlings under high P levels. Rev Bras Ciencia Solo 28:827–832

    Article  Google Scholar 

  • Siddiqui IA, Shaukat SS (2002) Rhizobacteria-mediated induction of systemic resistance (ISR) in tomato against Meloidogyne javanica. J Phytopathol 150:469–473

    Article  Google Scholar 

  • Singh R, Adholeya A, Mukerij KG (2000) Mycorrhiza in control of soil-borne pathogens. In: Mukerij KG, Chamalo BP, Singh J (eds) Mycorrhizal biology. Academic-Plenum Publishers, New York, pp 173–196

    Chapter  Google Scholar 

  • Slezack S, Dumas-Gaudot E, Paynot M, Gianinazzi S (2000) Is a fully established arbuscular mycorrhizal symbiosis required for bioprotection of Pisum sativum roots against Aphanomyces eusteiches. Mol Plant Microbe In 13:238–241

    Article  CAS  Google Scholar 

  • Speijer PR, De Waele D (1997) Screening of Musa germplasm for resistance and tolerance to nematodes. INIBAP Technical Guidelines N°1. INIBAP, Montpellier, France

    Google Scholar 

  • St-Arnaud M, Vujanovic V (2007) Effect of the arbuscular mycorrhizal symbiosis on plant diseases and pests. In: Hamel C, Plenchette C (eds) Mycorrhizae in crop production: applying knowledge. Haworth Press, Binghampton, New York, pp 67–122

    Google Scholar 

  • Vallad GE, Goodman RM (2004) Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci 44:1920–1934

    Article  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Vierheilig H (2004) Further colonization by arbuscular mycorrhizal fungi in already mycorrhizal plants is suppressed after critical level of root colonization. J Physiol 161:339–341

    CAS  Google Scholar 

  • Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environl Microb 64:5004–5007

    CAS  Google Scholar 

  • Vierheilig H, Garcia-Garrido JM, Wyss U, Piché Y (2000) Systemic suppression of mycorrhizal colonization of barley roots already colonized by AM fungi. Soil Biol Biochem 32:589–595

    Article  CAS  Google Scholar 

  • Vu T, Hauschild R, Sikora RA (2006) Fusarium oxysporum endophytes induced systemic resistance against Radopholus similis on banana. Nematology 8:847–852

    Article  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizals in biocontrol of root pathogens. Can J Botany 82:1198–1227

    Article  Google Scholar 

  • Zhu HH, Yao Q (2004) Localized and systemic increase of phenols in tomato roots induced by Glomus versiforme inhibit Ralstonia solanacearum. J Phytopathol 152:537–542

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by a VLIR-UDC grant from the Belgian government to D. Gervacio and by a Postdoctoral Fellowship of the Research Foundation—Flanders (FWO-Vlaanderen) to A. Elsen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Elsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elsen, A., Gervacio, D., Swennen, R. et al. AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect. Mycorrhiza 18, 251–256 (2008). https://doi.org/10.1007/s00572-008-0173-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-008-0173-6

Keywords

Navigation