Skip to main content

Advertisement

Log in

Nutrient amounts of ectomycorrhizae analysed by EDX using ESEM and ICP

  • Short Note
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Energy-dispersive X-ray (EDX) analysis coupled with an environmental scanning electron microscope (ESEM) was tested as an alternative to the inductively coupled argon plasma (ICP) spectrometer method for nutrient analyses of ectomycorrhizae. The results of EDX–ESEM and ICP were compared for 12 ectomycorrhizal morphotypes collected in beech and Scots pine forests in northern Brandenburg. The amounts of Al, Ca, Mg and S analysed in the outer hyphal layers of the sheath with the EDX–ESEM technique correlated well with the amounts of these elements in the whole mycorrhiza as assessed by ICP. For the elements P and K, no such correlation existed, indicating an uneven distribution of these elements in the ectomycorrhiza. It is concluded that the EDX–ESEM technique could be a useful and reliable tool for the analysis of nutrient elements in ectomycorrhizae, especially for studies focussing on small-scale soil heterogeneity or on infrequent morphotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arocena JM, Glowa KR, Massicotte HB (2001) Calcium-rich hypha encrustations on Piloderma. Mycorrhiza 10:209–215

    Article  Google Scholar 

  • Bonanomi A, Oetiker JH, Guggenheim R, Boller T, Wiemken A, Vögeli-Lange R (2001) Arbuscular mycorrhiza in mini-mycorrhizotrons: first contact of Medicago truncatula roots with Glomus intraradices induces chalcone synthase. New Phytol 150:573–582

    Article  Google Scholar 

  • Bücking H, Heyser W (1999) Elemental composition and function of polyphosphates in ectomycorrhizal fungi—an X-ray microanalytical study. Mycol Res 103:31–39

    Article  Google Scholar 

  • Bücking H, Heyser W (2000a) Subcellular compartmentation of elements in non-mycorrhizal and mycorrhizal roots of Pinus sylvestris: an X-ray microanalytical study. I. The distribution of phosphate. New Phytol 145:311–320

    Article  Google Scholar 

  • Bücking H, Heyser W (2000b) Subcellular compartmentation of elements in non-mycorrhizal and mycorrhizal roots of Pinus sylvestris: an X-ray microanalytical study. II. The distribution of calcium, potassium and sodium. New Phytol 145:321–331

    Article  Google Scholar 

  • Bücking H, Heyser W (2001) Microautoradiographic localization of phosphate and carbohydrates in mycorrhizal roots of Populus tremula×Populus alba and the implications for transfer processes in ectomycorrhizal associations. Tree Physiol 21:101–107

    PubMed  Google Scholar 

  • Bücking H, Heyser W (2003) Uptake and transfer of nutrients in ectomycorrhizal associations: interactions between photosynthesis and phosphate nutrition. Mycorrhiza 13:59–68

    Google Scholar 

  • Bücking H, Beckmann S, Heyser W, Kottke I (1998) Elemental contents in vacuolar granules of ectomycorrhizal fungi measured by EELS and EDXS. A comparison of different methods and preparation techniques. Micron 29:53–61

    Article  Google Scholar 

  • Bücking H, Kuhn AJ, Schröder WH, Heyser W (2002) The fungal sheath of ectomycorrhizal pine roots: an apoplastic barrier for the entry of calcium, magnesium, and potassium into the root cortex? J Exp Bot 53:1659–1669

    Article  Google Scholar 

  • Casarin V, Plassard C, Souche G, Arvieu J-C (2003) Quantification of oxalate ions and protons released by ectomycorrhizal fungi in rhizosphere soil. Agronomie 23:461–469

    Article  Google Scholar 

  • Coleman MD, Bledsoe CS, Lopushinsky W (1989) Pure culture response of ectomycorrhizal fungi to imposed water stress. Can J Bot 67:29–39

    Google Scholar 

  • Danilatos GD (1988) Foundations of environmental scanning electron microscopy. Adv Electron Electron Phys 71:109–250

    Google Scholar 

  • Duddridge JA, Malibari A, Read DJ (1980) Structure and function of mycelial rhizomorphs with special reference to their role in water transport. Nature 287:834–836

    Article  Google Scholar 

  • Finlay RD (1989) Functional aspects of phosphorus uptake and carbon translocation in incompatible ectomycorrhizal associations between Pinus sylvestris and Suillus grevillei and Boletinus cavipes. New Phytol 112:185–192

    Google Scholar 

  • Guehl JM, Garbaye J (1990) The effects of ectomycorrhizal status on carbon dioxide assimilation capacity, water use efficiency and response of transplanting in seedlings of Pseudotsuga menziesii (Mirb.) Franco. Ann Sci For 21:551–563

    Google Scholar 

  • Hartley J, Cairney JWG, Meharg AA (1999) Cross-colonization of Scots pine (Pinus sylvestris) seedlings by the ectomycorrhizal fungus Paxillus involutus in the presence of inhibitory levels of Cd and Zn. New Phytol 142:141–149

    Article  Google Scholar 

  • Haug I, Oberwinkler F (1987) Some distinctive types of spruce mycorrhizae. Trees 1:172–188

    Google Scholar 

  • Haug I, Pritsch K, Oberwinkler F (1992) Der Einfluß von Düngung auf Feinwurzeln und Mykorrhizen im Kulturversuch und im Freiland. Forschungsber KfK-PEF 97:159

  • Hodson MJ, Wilkins DA (1991) Localization of aluminium in the roots of Norway spruce [Picea abies (L.) Karst.] inoculated with Paxillus involutus Fr. New Phytol 118:273–278

    Google Scholar 

  • Kottke I, Martin F (1994) Demonstration of aluminum in polyphosphate of Laccaria amethystea (Bolt ex Hooker) Murr by means of electron-energy-loss spectroscopy. J Microsc 174:225–232

    Google Scholar 

  • Kottke I, Qian XM, Pritsch K, Haug I, Oberwinkler F (1998) Xerocomus badiusPinus abies, an ectomycorrhiza of high activity and element storage capacity in acidic soil. Mycorrhiza 7:267–275

    Article  Google Scholar 

  • Leapman RD, Hunt JA (1991) Comparison of detection limits for EELS and EDXS. Microsc Microanal Microstruct 2:231–244

    Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    Article  CAS  Google Scholar 

  • Lussenhop J, Fogel R (1999) Seasonal change in phosphorus content of Pinus strobusCenococcum geophilum ectomycorrhizae. Mycologia 91:742–746

    Google Scholar 

  • Lux A, Luxova M, Hattori T, Inanaga S, Sugimoto Y (2002) Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance. Physiol Plant 115:87–92

    Article  Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    CAS  Google Scholar 

  • Rapp C (1991) Untersuchungen zum Einfluß von Kalkung und Ammoniumsulfat-Düngung auf Feinwurzeln und Ektomykorrhizen eines Buchenaltbestandes im Solling. Ber Forschzent Waldökosyst A, Bd. 72, Universität Göttingen

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems—a journey towards relevance? New Phytol 157:475–492

    Article  Google Scholar 

  • Rumberger MD, Münzenberger B, Bens O, Ehrig F, Lentzsch P, Hüttl RF (2004) Changes in diversity and storage function of ectomycorrhiza and soil organoprofile dynamics after introduction of beech into Scots pine forests. Plant Soil 264:111–126

    Article  Google Scholar 

  • Sen R (2001) Multitrophic interactions between a Rhizoctonia sp. and mycorrhizal fungi affect Scots pine seedling performance in nursery soil. New Phytol 152:543–553

    Article  Google Scholar 

  • Turnau K, Kottke I, Dexheimer J (1996) Toxic element filtering in Rhizopogon roseolus/Pinus sylvestris mycorrhizas collected from calamine dumps. Mycol Res 100:16–22

    Google Scholar 

  • Wallander H, Mahmood S, Hagerberg D, Johansson L, Pallon J (2003) Element composition of ectomycorrhizal mycelia identified by PCR–RFLP analysis and grown in contact with apatite or wood ash in forest soil. FEMS Microbiol Ecol 44:57–65

    Article  Google Scholar 

  • Winn-Börner U (1991) Untersuchungen zur Elementaufnahme mykorrhizierter Wurzeln der Buche und der Kiefer unter Berücksichtigung des Beitrages unterschiedlicher Pilzpartner und des jahreszeitlichen Verlaufs. Ph.D. thesis, Universität Bremen

Download references

Acknowledgements

We thank the German Ministry of Education and Research (BMBF) for financial support and G. Franke for skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babette Münzenberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rumberger, M.D., Lentzsch, P., Münzenberger, B. et al. Nutrient amounts of ectomycorrhizae analysed by EDX using ESEM and ICP. Mycorrhiza 15, 307–312 (2005). https://doi.org/10.1007/s00572-005-0350-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-005-0350-9

Keywords

Navigation