Skip to main content

Advertisement

Log in

Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The ability of fluorescent pseudomonads and arbuscular mycorrhizal fungi (AMF) to promote plant growth is well documented but knowledge of the impact of pseudomonad-mycorrhiza mixed inocula on root architecture is scanty. In the present work, growth and root architecture of tomato plants (Lycopersicon esculentum Mill. cv. Guadalete), inoculated or not with Pseudomonas fluorescens 92rk and P190r and/or the AMF Glomus mosseae BEG12, were evaluated by measuring shoot and root fresh weight and by analysing morphometric parameters of the root system. The influence of the microorganisms on phosphorus (P) acquisition was assayed as total P accumulated in leaves of plants inoculated or not with the three microorganisms. The two bacterial strains and the AMF, alone or in combination, promoted plant growth. P. fluorescens 92rk and G. mosseae BEG12 when co-inoculated had a synergistic effect on root fresh weight. Moreover, co-inoculation of the three microorganisms synergistically increased plant growth compared with singly inoculated plants. Both the fluorescent pseudomonads and the myco-symbiont, depending on the inoculum combination, strongly affected root architecture. P. fluorescens 92rk increased mycorrhizal colonization, suggesting that this strain is a mycorrhization helper bacterium. Finally, the bacterial strains and the AMF, alone or in combination, improved plant mineral nutrition by increasing leaf P content. These results support the potential use of fluorescent pseudomonads and AMF as mixed inoculants for tomato and suggest that improved tomato growth could be related to the increase in P acquisition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1997) Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil 192:71–79

    Article  CAS  Google Scholar 

  • Azcon-Aguilar C, Jaizme-Vega MC, Calvet C (2002) The contribution of arbuscular mycorrhizal fungi to the control of soil borne plant pathogens. In: Gianinazzi S, Schuepp H (eds) Mycorrhizal technology: from genes to bioproducts — achievement and hurdles in arbuscular mycorrhizal research. Birkhäuser, Basel, pp187–198

  • Bakker PAHM, Lamers JG, Bakker AW, Marugg JD, Weisbeek PJ, Shippers B (1987) The role of siderophores in potato tuber yield increase by Pseudomonas putida in a short rotation of potato. Neth J Plant Pathol 92:249–256

    Google Scholar 

  • Barea JM, Azcón-Aguilar C, Azcón R (1997) Interactions between mycorrhizal fungi and rhizosphere microorganisms within the context of sustainable soil-plant systems. In: Gange AC, Brown VK (eds) Multitrophic interactions in terrestrial systems. Blackwell, Oxford, pp 65–77

  • Berta G, Fusconi A, Hooker JE (2002) Arbuscular mycorrhizal modifications to plant root systems. In: Gianinazzi S, Schuepp H (eds) Mycorrhizal technology: from genes to bioproducts — achievement and hurdles in arbuscular mycorrhizal research. Birkhäuser, Basel, pp 71–101

  • Bucki PM, Laich FS, Melegari AL, Escande A (1998) Mal de las almácigas en berenjena (Solanum melongena L.): aislamiento y selección de agentes causales y de microorganismos para el control biológico. Fitopatol 33:108–115

    Google Scholar 

  • Chiarini L, Bevivino A, Tabacchioni S, Dalmastri C (1998) Inoculation of Burkholderia cepacia, Pseudomonas fluorescens and Enterobacter sp. on Sorghum bicolor: root colonization and plant growth promotion of dual strain inocula. Soil Biol Biochem 30:81–87

    Article  CAS  Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902

    CAS  Google Scholar 

  • Cordier C, Gianinazzi S, Gianinazzi-Pearson V (1996) Colonisation patterns of root tissues by Phytophthora nicotianae var. parasitica related to reduced disease in mycorrhizal tomato. Plant Soil 185:223–232

    CAS  Google Scholar 

  • Edwards SG, Young JPW, Fitter AH (1998) Interactions between Pseudomonas fluorescens biocontrol agents and Glomus mosseae, an arbuscular mycorrhizal fungus, within the rhizosphere. FEMS Microbiol Lett 166:297–303

    Article  CAS  Google Scholar 

  • Frey-Klett P, Pierrat JC, Garbaye J (1997) Location and survival of mycorrhiza helper Pseudomonas fluorescens during establishment of ectomycorrhizal symbiosis between Laccaria bicolor and Douglas fir. Appl Environ Microbiol 63:139–144

    CAS  Google Scholar 

  • Galleguillos C, Aguirre C, Barea JM, Azcon R (2000) Growth promoting effect of two Sinorhizobium meliloti strains (a wild type and its genetically modified derivative) on a non-legume plant species in specific interaction with two arbuscular mycorrhizal fungi. Plant Sci 159:57–63

    Article  CAS  PubMed  Google Scholar 

  • Gamalero E, Martinotti MG, Trotta A, Lemanceau P, Berta G (2002) Morphogenetic modifications induced by Pseudomonas fluorescens A6RI and Glomus mosseae BEG12 in the root system of tomato differ according to plant growth conditions. New Phytol 155:293–300

    Article  Google Scholar 

  • Gamalero E, Fracchia L, Cavaletto M, Garbaye J, Frey-Klett P, Varese GC, Martinotti MG (2003) Characterization of functional traits of two fluorescent pseudomonads isolated from basidiomes of ectomycorrhizal fungi. Soil Biol Biochem 35:55–65

    Article  CAS  Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Google Scholar 

  • Germida JJ, Walley FL (1996) Plant growth promoting rhizobacteria alter rooting patterns and arbuscular mycorrhizal fungi colonization of field-grown spring wheat. Biol Fertil Soils 23:113–120

    CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    CAS  Google Scholar 

  • Hiltner L (1904) Über neuere Erfahrungen und Problem auf dem Gebiet der Bodenbakteriologie und unter besonderer Berucksichtigung der Grundungung und Brache. Arb Dtsch Landwirtsch Ges 98:59–78

    Google Scholar 

  • Hofer RM (1996) Root hairs. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots. The hidden half. Dekker, New York, pp 111–126

  • Kapulnik Y (1996) Plant growth promotion by rhizosphere bacteria. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots. The hidden half. Dekker, New York, pp 769–781

  • King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocianin and fluorescin. J Lab Clin Med 44:301–307

    Google Scholar 

  • Kravchenko LV, Azarova TS, Leonova-Erko EI, Shaposhnikov AI, Makarova NM, Tichonovich IA (2003) Root exudates of tomato plants and their effect on the growth and antifungal activity of Pseudomonas strains. Microbiology 72:37–41

    Article  CAS  Google Scholar 

  • Lifschitz R, Klopper JW, Kozlowski M, Simonson C, Carlston J, Tipping EM, Zaleska I (1987) Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can J Microbiol 33:390–395

    Google Scholar 

  • Loper JE, Haack C, Schroth MN (1985) Population dynamics of soil pseudomonads in the rhizosphere of potato (Solanum tuberosum L.). Appl Environ Microbiol 49:416–422

    Google Scholar 

  • Lugtenberg BJJ, Dekkers LC (1999) What makes Pseudomonas bacteria rhizosphere competent? Environ Microbiol 1:9–13

    Article  CAS  PubMed  Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10

    CAS  Google Scholar 

  • Mazzola M (1999) The potential use of natural and genetically engineered fluorescent Pseudomonas spp. as biological control agents. In: Subba Rao NS, Dommergues YR (eds) Microbial interactions in agriculture and forestry, vol 1. Science, Plymouth, pp 195–218

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

  • Paulitz TC, Linderman RG (1989) Interactions between fluorescent pseudomonads and VA mycorrhizal fungi. New Phytol 113:37–45

    Google Scholar 

  • Probanza A, Lucas Garcia JA, Ruiz-Palomino M, Ramos B, Gutierrez-Mañero FJ (2002) Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT5106 and B. pumilus CECT 5105). Appl Soil Ecol 20:75–84

    Google Scholar 

  • Ravnskov S, Jakobsen I (1995) Functional compatibility in arbuscular mycorrhizas measured as hyphal P transport to the plant. New Phytol 129:611–618

    Google Scholar 

  • Ravnskov S, Jakobsen I (1999) Effects of Pseudomonas fluorescens DF57 on growth and P uptake of two arbuscular mycorrhizal fungi in symbiosis with cucumber. Mycorrhiza 8:329–334

    Article  CAS  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech Adv 17:319–339

    Article  CAS  Google Scholar 

  • Singh S, Kapoor KK (1998) Effects of inoculation of phosphate-solubilizing microorganisms and an arbuscular mycorrhizal fungus on mungbean grown under natural soil conditions. Mycorrhiza 7:249–253

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Genetic, cellular and molecular interactions in the establishment of VA mycorrhizas. In: Smith SE, Read DJ (eds) Mycorrhizal symbiosis. Academic, New York, pp 9–33

  • Toro M, Azcón R, Barea JM (1997) Improvement of arbuscular development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl Environ Microbiol 63:4408–4412

    CAS  Google Scholar 

  • Trotta A, Carminati C, Schelembaum L, Scannerini S, Fusconi A, Berta G (1991) Correlation between root morphogenesis, VA mycorrhizal infection and phosphorus nutrition. In: McMichael BL, Persson H (eds) Plant roots and their environment. Elsevier, Amsterdam, pp 333–389

  • Trotta A, Varese GC, Gnavi E, Fusconi E, Sampo' S, Berta G (1996) Interaction between the soil-borne pathogen Phythophthora parasitica var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant Soil 185:199–209

    CAS  Google Scholar 

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorrhization VA d'un système radiculaire. Recherche de méthodes d'estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 217–221

  • Turnau K, Haselwandter K (2002) Arbuscular mycorrhizal fungi, an essential component of soil microflora in ecosystem restoration. In: Gianinazzi S, Schuepp H (eds) Mycorrhizal technology: from genes to bioproducts. Birkhäuser, Basel, pp 137–149

  • Van Veen JA, Van Overbeek LS, Van Elsas JD (1997) Fate and activity of microorganisms introduced in soil. Microbiol Mol Biol Rev 61:121–135

    PubMed  Google Scholar 

  • Varese GC, Portinaro S, Trotta A, Scannerini S, Luppi-Mosca AM, Martinotti MG (1996) Bacteria associated with Suillus grevillei sporocarps and ectomycorrhizae and their effect on in vitro growth of the mycobiont. Symbiosis 21:129–147

    Google Scholar 

  • Walley FL, Germida JJ (1997) Response of spring wheat (Triticum aestivum) to interactions between Pseudomonas species and Glomus clarum NT4. Biol Fertil Soils 24:365–371

    Article  Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. Guido Lingua for critical reading of the paper, and Dr. Lorena Avidano and Dr. Barbara Pivato for technical support and stimulating discussions. We are grateful to Dr. Alberto Escande (Instituto Nacional de Tecnologia Agropecuaria, Balcarce, Argentina) for providing the P. fluorescens strain P190. This work was supported by MIUR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Gamalero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamalero, E., Trotta, A., Massa, N. et al. Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14, 185–192 (2004). https://doi.org/10.1007/s00572-003-0256-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-003-0256-3

Keywords

Navigation