Skip to main content
Log in

Nonlinear stability of electro-visco-elastic Walters’ B type in porous media

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper investigates the nonlinear instability of a non-Newtonian fluid of the Walters’ B type. The fluids fill the regions inside and outside a vertical circular cylinder. An axial electric field of uniform strength is pervaded along the axis of the jet. The fluids are saturated in porous media. Typically, the nonlinear analysis is based on solving the linear governing equations of motion, then applying the convenient nonlinear boundary conditions. This methodology yields a nonlinear characteristic equation which governs the behavior of the interface deflection. As the nonlinear terms are omitted, a linear dispersion relation arises. Therefore, the stability criteria are analytically analyzed and numerically confirmed. The nonlinear approach depends on the multiple time scale technique together with the support of the Taylor theory. This approach resulted in a Ginzburg–Landau equation. Consequently, the stability criteria are achieved in both analytical and numerical analysis. Furthermore, by means of the expanded frequency analysis, a bounded approximate solution of the amplitude of the surface waves is accomplished. The homotopy perturbation method (MPM) is utilized to obtain an approximate distribution of the conducted artificial frequency. Additionally, the generating function of the interface is graphically represented. Several special cases are reported upon convenient data choices. Regions of stability and instability are addressed. In the stability profile, the electric field intensity is plotted versus the wave number. The influences of the parameters on the stability are identified. The nonlinear stability approach divides the phase plane into several parts of stability/instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Al-Karashi SA, Gamiel Y (2017) Stability characteristics of periodic streaming fluids in porous media. Theor Math Phys 191(1):580–601

    Article  MathSciNet  MATH  Google Scholar 

  • Awasthi MK, Asthana R, Agrawal GS (2012) Viscous corrections for the viscous potential flow analysis of magnetohydrodynamic Kelvin–Helmholtz instability with and mass transfer. Eur Phys J 48:174–183

    Article  Google Scholar 

  • Barik RN, Dash GC, Rath PK (2018) Steady laminar MHD of visco-elastic fluid through a porous pipe embedded in a porous medium. Alex Eng J 57:973–982

    Article  Google Scholar 

  • Bau HH (1982) Kelvin–Helmholtz instability for parallel flow in porous media: a linear theory. Phys Fluids 25(10):1719–1722

    Article  MATH  Google Scholar 

  • Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Chen CH (2011) Electrohydrodynamic stability. In: Ramos A (ed) Electrokinetic and electrohydrodynamics in microsystems. Springer, Berlin, pp 177–220

    Chapter  Google Scholar 

  • El-Dib YO (2003) Nonlinear Rayleigh–Taylor instability for hydromagnetic Darcian flow: effect of free surface currents. J Colloid Interface Sci 259:309–321

    Article  Google Scholar 

  • El-Dib YO (2017a) Homotopy perturbation for excited nonlinear equations. Sci Eng Appl 2(1):96–108

    Google Scholar 

  • El-Dib YO (2017b) Multiple scales homotopy perturbation method for nonlinear oscillators. Nonlinear Sci Lett A 8:352–364

    Google Scholar 

  • El-Dib YO, Moatimid GM (2018) On the coupling of the homotopy perturbation and Frobeninus method for exact solutions of singular nonlinear differential equations. Nonlinear Sci Lett A 9(3):220–230

    Google Scholar 

  • El-Dib YO, Moatimid GM (2019) Stability configuration of a rocking rigid rod over a circular surface using the homotopy perturbation method and Laplace transform. Arab J Sci Eng 44(7):6581–6659

    Article  Google Scholar 

  • El-Sayed MF, Moatimid GM, Metwaly TMN (2010) Nonlinear Kelvin–Helmholtz instability of two superposed dielectric finite fluids in porous medium under vertical electric fields. Chem Eng Commun 197(5):656–683

    Article  Google Scholar 

  • El-Sayed MF, Moatimid GM, Metwaly TMN (2011) Nonlinear electrohydrodynamic stability of two superposed streaming finite dielectric fluids in porous medium with interfacial charges. Transp Porous Media 86(2):559

    Article  MathSciNet  Google Scholar 

  • El-Sayed MF, Eldabe NT, Haroun MH, Mostafa DM (2014a) Nonlinear electroviscoelastic potential flow instability of two superposed streaming dielectric fluids. Can J Phys 92:1249–1257

    Article  Google Scholar 

  • El-Sayed MF, Eldabe NT, Haroun MH, Mostafa DM (2014b) Nonlinear stability of viscoelastic fluids streaming through porous media under the influence of vertical electric fields producing surface charges. Int J Adv Appl Math Mech 2(2):110–125

    MathSciNet  MATH  Google Scholar 

  • Fedorov AA, Berdnikov AS, Kurochkin VE (2019) The polymerase chain reaction model analyzed by the homotopy perturbation method. J Math Chem 57:971–985

    Article  MathSciNet  MATH  Google Scholar 

  • Funada T, Joseph DD (2001) Viscous potential flow analysis of Kelvin–Helmholtz instability in a channel. J Fluid Mech 445:263–283

    Article  MathSciNet  MATH  Google Scholar 

  • Funada T, Joseph DD (2003) Viscoelastic potential flow analysis of capillary instability. J Nonnewton Fluid Mech 111(2–3):87–105

    Article  MATH  Google Scholar 

  • He JH (1999) Homotopy perturbation technique. Comput Methods Appl Mech Eng 178:257–262

    Article  MathSciNet  MATH  Google Scholar 

  • Joseph DD (2003) Viscous potential flow. J Fluid Mech 479:191–197

    Article  MathSciNet  MATH  Google Scholar 

  • Joseph DD (2006) Potential flow of viscous fluids: historical notes. Int J Multiph Flow 32(3):285–310

    Article  MATH  Google Scholar 

  • Kumar P (2017) Instability in Walters B’ viscoelastic dusty fluid through porous medium. Fluid Mech Res Int J 1(1):7

    Article  Google Scholar 

  • Kumar P, Singh GJ (2010) On the stability of two stratified Walters B’ viscoelastic superposed fluids. Stud Geotech Mech XXXII(4):29–37

    Google Scholar 

  • Liu M-F, Chang T-P (2010) Stability analysis and investigation of a magnetoelastic beam subjected to axial compressive load and transverse magnetic field. Math Probl Eng 2010:17

    MATH  Google Scholar 

  • Melcher JR (1981) Continuum electromechanics. MIT Press, Cambrige

    Google Scholar 

  • Melcher JR, Taylor GI (1969) Electrohydrodynamics: a review of the role of interfacial shear stress. Annu Rev Fluid Mech 1:111–146

    Article  Google Scholar 

  • Moatimid GM (1995) Electrodynamic stability with mass and heat transfer of two fluids with a cylindrical interface. Int J Eng Sci 33:119–126

    Article  MathSciNet  MATH  Google Scholar 

  • Moatimid GM (2003) Non-linear electrorheological instability of two streaming cylindrical fluids. J Phys A Math Gen 36:11343–11365

    Article  MathSciNet  MATH  Google Scholar 

  • Moatimid GM (2006) Nonlinear Kelvin–Helmholtz instability of two miscible ferrofluids in porous media. ZAMP 57:133–159

    MathSciNet  MATH  Google Scholar 

  • Moatimid GM, El-Dib YO (2004) Nonlinear Kelvin–Helmholtz instability of Oldroydian viscoelastic fluid in porous media. Phys A 333:41–64

    Article  Google Scholar 

  • Moatimid GM, Mostapha DR (2019) Nonlinear electrohydrodynamic instability through two jets of an Oldroydian viscoelastic fluids with a porous medium under the influence of electric field. AIP Adv 9(5):055302

    Article  Google Scholar 

  • Moatimid GM, El-Dib YO, Zekry MH (2018) Stability analysis using multiple scales homotopy approach of coupled cylindrical interfaces under the influence of periodic electrostatic fields. Chin J Phys 56:2507–2522

    Article  Google Scholar 

  • Moatimid GM, El-Dib YO, Zekry MH (2019) Instability analysis of a streaming electrified cylindrical sheet through porous media. Pramana J Phys 92:22

    Article  Google Scholar 

  • Moatimid GM, El-Dib YO, Zekry MH (2020) The nonlinear instability of a cylindrical interface between two hydromagnetic Darcian flow. Arab J Sci Eng 54:391–409

    Article  Google Scholar 

  • Nayfeh AH (1976) Nonlinear propagation of wave packets on fluid interfaces. J Appl Math ASME 98E:584–588

    MATH  Google Scholar 

  • Saville DA (1997) Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Annu Rev Fluid Mech 29:27–64

    Article  MathSciNet  Google Scholar 

  • Sharma RC, Chand SC (1999) The instability of streaming Walers’ viscoelastic B’ in porous medium. Czech J Phys 49(2):189–195

    Article  MATH  Google Scholar 

  • Zahreddine Z, El-Shehawey EF (1988) On the stability of a system of differential equations with complex coefficients. Indian J Pure Appl Math 19:963–972

    MathSciNet  MATH  Google Scholar 

  • Zakaria K, Sirwah MA, Alkharashi SA (2008) Temporal stability of superposed magnetic fluids in porous media. Phys Scr 77:1–20

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwa H. Zekry.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The coefficients that are appearing in Eq. (26) may be listed as follows:

$$c = \frac{{I_{0} (kR)\left( {2\mu^{\prime}_{1} k^{2} - \rho_{1} } \right)}}{{kI_{1} (kR)}} + \frac{{K_{0} (kR)\left( {2\mu^{\prime}_{2} k^{2} - \rho_{2} } \right)}}{{kK_{1} (kR)}} - \frac{{\mu^{\prime}_{2} - \mu^{\prime}_{1} }}{R},$$
$$a_{1} = \frac{{U_{1} \left( {\mu^{\prime}_{1} k^{2} (I_{0} (kR) + I_{2} (kR)) - \rho_{1} I_{0} (kR)} \right)}}{{k\,c\,I_{1} (kR)}} + \frac{{U_{2} \left( {\mu^{\prime}_{2} k^{2} (K_{0} (kR) + K_{2} (kR)) - \rho_{2} K_{0} (kR)} \right)}}{{k\,c\,K_{1} (kR)}},$$
$$a_{2} = \frac{T}{{R^{2} }},$$
$$b_{1} = \frac{{2(\mu_{1} - \mu_{2} )}}{c\,R} - \frac{{I_{0} (kR)\left( {2\mu_{1} k^{2} + \nu_{1} } \right)}}{{k\,c\,I_{1} (kR)}} - \frac{{K_{0} (kR)\left( {2\mu_{2} k^{2} + \nu_{2} } \right)}}{{k\,c\,K_{1} (kR)}},$$
$$c_{1} = - \frac{{\rho_{1} U_{1} I_{0} (kR)}}{{\,c\,I_{1} (kR)}} - \frac{{\rho_{2} U_{2} K_{0} (kR)}}{{\,c\,K_{1} (kR)}},$$
$$b_{2} = - \frac{{U_{1} \left( {\mu_{1} k^{2} (I_{0} (kR) + I_{2} (kR)) + \nu_{1} I_{0} (kR)} \right)}}{{k\,c\,I_{1} (kR)}} - \frac{{U_{2} \left( {\mu_{2} k^{2} (K_{0} (kR) + K_{2} (kR)) + \nu_{2} K_{0} (kR)} \right)}}{{k\,c\,K_{1} (kR)}},$$
$$c_{2} = - \frac{{I_{0} (kR)K_{0} (kR)\left( {\varepsilon_{1} - \varepsilon_{2} } \right)^{2} E_{0}^{2} }}{{\,c\,\left( {\varepsilon_{1} I_{1} (kR)K_{0} (kR) + \varepsilon_{2} I_{0} (kR)K_{1} (kR)} \right)}} - \frac{{\rho_{1} U_{1}^{2} I_{0} (kR)}}{{\,c\,I_{1} (kR)}} - \frac{{\rho_{2} U_{2}^{2} K_{0} (kR)}}{{\,c\,K_{1} (kR)}}.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moatimid, G.M., Zekry, M.H. Nonlinear stability of electro-visco-elastic Walters’ B type in porous media. Microsyst Technol 26, 2013–2027 (2020). https://doi.org/10.1007/s00542-020-04752-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-020-04752-6

Navigation