Skip to main content
Log in

Numerical approach for nanofluid transportation due to electric force in a porous enclosure

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In current attempt, nanoparticle Electrohydrodynamic transportation has been modeled numerically via control volume based finite element method. Mixture of Fe3O4 and Ethylene glycol is elected. Impact of radiation parameter \( \text{(}Rd\text{)} \), voltage supplied \( \text{(}\Delta \varphi \text{)} \), nanoparticle concentration, Permeability and Reynolds number have been displayed. Results display that permeability and thermal radiation can improve temperature gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

N E :

Electric field number

\( \mathop {F_{E} }\limits^{ \to } \) :

Electric force

u :

Horizontal velocity

D e :

Diffusion number

S E :

Lorentz force number

PrE :

Electric Prandtl number

φ :

Electric field potential

ρ :

Density

\( \phi \) :

Volume fraction

σ :

Electric conductivity

μ :

Dynamic viscosity

c :

Cold

s :

Solid particles

References

  • Abro KA, Khan I (2017) Analysis of the heat and mass transfer in the MHD flow of a generalized Casson fluid in a porous space via non-integer order derivatives without a singular kernel. Chin J Phys 55:1583–1595

    Article  MathSciNet  Google Scholar 

  • Ahmed N, Khan U, Mohyud-Din ST (2017) Unsteady radiative flow of chemically reacting fluid over a convectively heated stretchable surface with cross-diffusion gradients. Int J Thermal Sci 121:182–191

    Article  Google Scholar 

  • Besthapu P, Haq RU, Bandari S, Al-Mdallal QM (2017) Thermal radiation and slip effects on MHD stagnation point flow of non-Newtonian nanofluid over a convective stretching surface. Neural Comput Appl. https://doi.org/10.1007/s00521-017-2992-x

    Google Scholar 

  • Bhatti MM, Ali Abbas M (2016) Simultaneous effects of slip and MHD on peristaltic blood flow of Jeffrey fluid model through a porous medium. Alex Eng J 55:1017–1023

    Article  Google Scholar 

  • Bhatti MM, Zeeshan A, Ellahi R (2016) Endoscope analysis on peristaltic blood flow of Sisko fluid with Titanium magneto-nanoparticles. Comput Biol Med 78:29–41

    Article  Google Scholar 

  • Bhatti MM, Zeeshan A, Ellahi R (2017a) Simultaneous effects of coagulation and variable magnetic field on peristaltically induced motion of Jeffrey nanofluid containing gyrotactic microorganism. Microvasc Res 11:32–42

    Article  Google Scholar 

  • Bhatti MM, Zeeshan A, Ijaz N, Anwar Bég O, Kadir A (2017b) Mathematical modelling of nonlinear thermal radiation effects on EMHD peristaltic pumping of viscoelastic dusty fluid through a porous medium duct. Eng Sci Technol Int J 20:1129–1139

    Article  Google Scholar 

  • Bhatti MM, Zeeshan A, Rashidi MM (2017c) Influence of magnetohydrodynamics on metachronal wave of particle-fluid suspension due to cilia motion. Eng Sci Technol Int J 20:265–271

    Article  Google Scholar 

  • Bhatti MM, Sheikholeslami M, Zeeshan A (2017d) Entropy analysis on electro-kinetically modulated peristaltic propulsion on magnetized nanofluid flow through a microchannel. Entropy 19:481. https://doi.org/10.3390/e19090481

    Article  Google Scholar 

  • Eldabe NT, Gabr ME, Zaher SA (2018a) Two dimensional boundary layer flow with heat and mass transfer of magneto hydrodynamic non-Newtonian nanofluid through porous medium over a semi-infinite moving plate. Microsyst Technol 24:2919–2928

    Article  Google Scholar 

  • Eldabe NTM, Abo-Seida OM, Abo Seliem AAS, Elshekhipy AA, Hegazy N (2018b) Magnetohydrodynamic peristaltic flow of Williamson nanofluid with heat and mass transfer through a non-Darcy porous medium. Microsyst Technol 24:3751–3776

    Article  Google Scholar 

  • Ellahi R, Mubashir Bhatti M, Riaz A, Sheikholeslami M (2014) Effects of magnetohydrodynamics on peristaltic flow of jeffrey fluid in a rectangular duct through a porous medium. J Porous Media 17(2):143–157

    Article  Google Scholar 

  • Ellahi R, Hassan M, Zeeshan A, Khan AA (2016) The shape effects of nanoparticles suspended in HFE-7100 over wedge with entropy generation and mixed convection. Appl Nanosci 6:641–651 (Springer)

    Article  Google Scholar 

  • Haque MM, Alam MM, Ferdows M, Al-Mdallal QM (2013) Numerical simulation and stability analysis on MHD free convective heat and mass transfer unsteady flow through a porous medium in a rotating system with induced magnetic field. Int J Appl Electromagn Mech 41(2):121–141

    Article  Google Scholar 

  • Khan MI, Dong H, Shabbir F, Shoukat R (2018) Embedded passive components in advanced 3D chips and micro/nano electronic systems. Microsyst Technol 24:869–877

    Article  Google Scholar 

  • Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf 446:3639–3653

    Article  MATH  Google Scholar 

  • Lu D, Ramzan M, Ullah N, Chung JD, Farooq U (2017) A numerical treatment of radiative nanofluid 3D flow containing gyrotactic microorganism with anisotropic slip, binary chemical reaction and activation energy. Sci Rep 7:17008

    Article  Google Scholar 

  • Lu D, Ramzan M, ul Huda N, Chung JD, Farooq U (2018) Nonlinear radiation effect on MHD Carreau nanofluid flow over a radially stretching surface with zero mass flux at the surface. Sci Rep 8(1):3709

    Article  Google Scholar 

  • Mehmood R, Nadeem S, Saleem S, Akbar NS (2017) Flow and heat transfer analysis of Jeffery nano fluid impinging obliquely over a stretched plate. J Taiwan Inst Chem Eng 74:49–58

    Article  Google Scholar 

  • Mishra SR, Bhatti MM (2017) Simultaneous effects of chemical reaction and Ohmic heating with heat and mass transfer over a stretching surface: a numerical study. Chin J Chem Eng 25:1137–1142

    Article  Google Scholar 

  • Moallemi MK, Jang KS (1992) Prandtl number effects on laminar mixed convection heat transfer in a lid-driven cavity. Int J Heat Mass Transf 35:1881–1892

    Article  MATH  Google Scholar 

  • Ramzan M, Bilal M, Dong CJ, Farooq U (2016) Mixed convective flow of Maxwell nanofluid past a porous vertical stretched surface—an optimal solution. Results in Physics 6:1072–1079

    Article  Google Scholar 

  • Ramzan M, Ullah N, Chung JD, Lu D, Farooq U (2017a) Buoyancy effects on the radiative magneto micropolar nanofluid flow with double stratification, activation energy and binary chemical reaction. Sci Rep 7:12901

    Article  Google Scholar 

  • Ramzan M, Chung JD, Ullah N (2017b) Partial slip effect in the flow of MHD micropolar nanofluid flow due to a rotating disk—a numerical approach. Results Phys 7:3557–3566

    Article  Google Scholar 

  • Shahid A, Bhatti MM, Bég OA, Kadir A (2017) Numerical study of radiative Maxwell viscoelastic magnetized flow from a stretching permeable sheet with the Cattaneo–Christov heat flux model. Neural Comput Appl 1:1–12

    Google Scholar 

  • Sheikholeslami M (2017a) Magnetic field influence on CuO–H2O nanofluid convective flow in a permeable cavity considering various shapes for nanoparticles. Int J Hydrogen Energy 42:19611–19621

    Article  Google Scholar 

  • Sheikholeslami Mohsen (2017b) Lattice Boltzmann method simulation of MHD non-Darcy nanofluid free convection. Phys B 516:55–71

    Article  Google Scholar 

  • Sheikholeslami M (2017c) Influence of magnetic field on nanofluid free convection in an open porous cavity by means of Lattice Boltzmann method. J Mol Liq 234:364–374

    Article  Google Scholar 

  • Sheikholeslami M (2017d) Magnetohydrodynamic nanofluid forced convection in a porous lid driven cubic cavity using Lattice Boltzmann method. J Mol Liq 231:555–565

    Article  Google Scholar 

  • Sheikholeslami M (2017e) Magnetic field influence on nanofluid thermal radiation in a cavity with tilted elliptic inner cylinder. J Mol Liq 229:137–147

    Article  Google Scholar 

  • Sheikholeslami M (2017f) Numerical simulation of magnetic nanofluid natural convection in porous media. Phys Lett A 381:494–503

    Article  Google Scholar 

  • Sheikholeslami M (2017g) Influence of Coulomb forces on Fe3O4–H2O nanofluid thermal improvement. Int J Hydrogen Energy 42:821–829

    Article  Google Scholar 

  • Sheikholeslami M (2018a) Finite element method for PCM solidification in existence of CuO nanoparticles. J Mol Liq 265:347–355

    Article  Google Scholar 

  • Sheikholeslami M (2018b) Application of Darcy law for nanofluid flow in a porous cavity under the impact of Lorentz forces. J Mol Liq 266:495–503

    Article  Google Scholar 

  • Sheikholeslami M (2018c) Magnetic source impact on nanofluid heat transfer using CVFEM. Neural Comput Appl 30(4):1055–1064

    Article  Google Scholar 

  • Sheikholeslami M (2018d) Solidification of NEPCM under the effect of magnetic field in a porous thermal energy storage enclosure using CuO nanoparticles. J Mol Liq 263:303–315

    Article  Google Scholar 

  • Sheikholeslami M (2018e) Influence of magnetic field on Al2O3–H2O nanofluid forced convection heat transfer in a porous lid driven cavity with hot sphere obstacle by means of LBM. J Mol Liq 263:472–488

    Article  Google Scholar 

  • Sheikholeslami M (2018f) Numerical simulation for solidification in a LHTESS by means of nano-enhanced PCM. J Taiwan Inst Chem Eng 86:25–41

    Article  Google Scholar 

  • Sheikholeslami M (2018g) Numerical modeling of Nano enhanced PCM solidification in an enclosure with metallic fin. J Mol Liq 259:424–438

    Article  Google Scholar 

  • Sheikholeslami M (2018h) Numerical investigation of nanofluid free convection under the influence of electric field in a porous enclosure. J Mol Liq 249:1212–1221

    Article  Google Scholar 

  • Sheikholeslami Mohsen (2018i) CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion. J Mol Liq 249:921–929

    Article  Google Scholar 

  • Sheikholeslami M (2018j) Numerical investigation for CuO-H2O nanofluid flow in a porous channel with magnetic field using mesoscopic method. J Mol Liq 249:739–746

    Article  Google Scholar 

  • Sheikholeslami M (2018k) Numerical simulation for external magnetic field influence on Fe3O4-water nanofluid forced convection. Eng Comput 35(4):1639–1654. https://doi.org/10.1108/EC-06-2017-0200

    Article  Google Scholar 

  • Sheikholeslami M (2018l) Application of control volume based finite element method (CVFEM) for nanofluid flow and heat transfer. Elsevier, New York. ISBN 9780128141526

    Google Scholar 

  • Sheikholeslami M, Bhatti MM (2017a) Active method for nanofluid heat transfer enhancement by means of EHD. Int J Heat Mass Transf 109:115–122

    Article  Google Scholar 

  • Sheikholeslami M, Bhatti MM (2017b) Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles. Int J Heat Mass Transf 111:1039–1049

    Article  Google Scholar 

  • Sheikholeslami Mohsen, Chamkha Ali J (2017) Influence of Lorentz forces on nanofluid forced convection considering Marangoni convection. J Mol Liq 225:750–757

    Article  Google Scholar 

  • Sheikholeslami M, Ellahi R (2015a) Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int J Heat Mass Transf 89:799–808

    Article  Google Scholar 

  • Sheikholeslami M, Ellahi R (2015b) Simulation of ferrofluid flow for magnetic drug targeting using Lattice Boltzmann method. Journal of Zeitschrift Fur Naturforschung A 70(2):115–124

    Google Scholar 

  • Sheikholeslami M, Ghasemi A (2018) Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM. Int J Heat Mass Transf 123:418–431

    Article  Google Scholar 

  • Sheikholeslami M, Rokni HB (2017a) Nanofluid convective heat transfer intensification in a porous circular cylinder. Chem Eng Process Process Intensif 120:93–104

    Article  Google Scholar 

  • Sheikholeslami M, Rokni HB (2017b) Melting heat transfer influence on nanofluid flow inside a cavity in existence of magnetic field. Int J Heat Mass Transf 114:517–526

    Article  Google Scholar 

  • Sheikholeslami M, Rokni HB (2017c) Simulation of nanofluid heat transfer in presence of magnetic field: a review. Int J Heat Mass Transf 115:1203–1233

    Article  Google Scholar 

  • Sheikholeslami M, Rokni HB (2017d) Numerical modeling of nanofluid natural convection in a semi annulus in existence of Lorentz force. Comput Methods Appl Mech Eng 317:419–430

    Article  MathSciNet  Google Scholar 

  • Sheikholeslami M, Rokni HB (2017e) Magnetohydrodynamic CuO-water nanofluid in a porous complex shaped enclosure. ASME, J Thermal Sci Eng Appl 9(4):041007. https://doi.org/10.1115/1.4035973

    Article  Google Scholar 

  • Sheikholeslami M, Rokni HB (2018a) CVFEM for effect of Lorentz forces on nanofluid flow in a porous complex shaped enclosure by means of Non-equilibrium model. J Mol Liq 254:446–462

    Article  Google Scholar 

  • Sheikholeslami M, Rokni HB (2018b) Magnetic nanofluid flow and convective heat transfer in a porous cavity considering Brownian motion effects. Phys Fluids. https://doi.org/10.1063/1.5012517

    Google Scholar 

  • Sheikholeslami M, Rokni HB (2018c) Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. Int J Heat Mass Transf 118:823–831

    Article  Google Scholar 

  • Sheikholeslami M, Sadoughi MK (2017a) Numerical modeling for Fe3O4-water nanofluid flow in porous medium considering MFD viscosity. J Mol Liq 242:255–264

    Article  Google Scholar 

  • Sheikholeslami Mohsen, Sadoughi Mohammadkazem (2017b) Mesoscopic method for MHD nanofluid flow inside a porous cavity considering various shapes of nanoparticles. Int J Heat Mass Transf 113:106–114

    Article  Google Scholar 

  • Sheikholeslami M, Sadoughi MK (2018) Simulation of CuO-water nanofluid heat transfer enhancement in presence of melting surface. Int J Heat Mass Transf 116:909–919

    Article  Google Scholar 

  • Sheikholeslami M, Seyednezhad M (2017a) Lattice Boltzmann method simulation for CuO-water nanofluid flow in a porous enclosure with hot obstacle. J Mol Liq 243:249–256

    Article  Google Scholar 

  • Sheikholeslami M, Seyednezhad M (2017b) Nanofluid heat transfer in a permeable enclosure in presence of variable magnetic field by means of CVFEM. Int J Heat Mass Transf 114:1169–1180

    Article  Google Scholar 

  • Sheikholeslami M, Seyednezhad M (2018) Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. Int J Heat Mass Transf 120:772–781

    Article  Google Scholar 

  • Sheikholeslami M, Shehzad SA (2017a) CVFEM for influence of external magnetic source on Fe3O4–H2O nanofluid behavior in a permeable cavity considering shape effect. Int J Heat Mass Transf 115:180–191

    Article  Google Scholar 

  • Sheikholeslami M, Shehzad SA (2017b) Magnetohydrodynamic nanofluid convective flow in a porous enclosure by means of LBM. Int J Heat Mass Transf 113:796–805

    Article  Google Scholar 

  • Sheikholeslami M, Shehzad SA (2017c) Thermal radiation of ferrofluid in existence of Lorentz forces considering variable viscosity. Int J Heat Mass Transf 109:82–92

    Article  Google Scholar 

  • Sheikholeslami M, Shehzad SA (2018a) CVFEM simulation for nanofluid migration in a porous medium using Darcy model. Int J Heat Mass Transf 122:1264–1271

    Article  Google Scholar 

  • Sheikholeslami M, Shehzad SA (2018b) Simulation of water based nanofluid convective flow inside a porous enclosure via non-equilibrium model. Int J Heat Mass Transf 120:1200–1212

    Article  Google Scholar 

  • Sheikholeslami M, Shehzad SA (2018c) Non-Darcy free convection of Fe3O4-water nanoliquid in a complex shaped enclosure under impact of uniform Lorentz force. Chin J Phys 56:270–281

    Article  Google Scholar 

  • Sheikholeslami M, Shehzad SA (2018d) Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source. Int J Heat Mass Transf 118:182–192

    Article  Google Scholar 

  • Sheikholeslami M, Vajravelu K (2017) Forced convection heat transfer in Fe3O4-ethylene glycol nanofluid under the influence of Coulomb force. J Mol Liq 233:203–210

    Article  Google Scholar 

  • Sheikholeslami M, Zeeshan A (2017) Analysis of flow and heat transfer in water based nanofluid due to magnetic field in a porous enclosure with constant heat flux using CVFEM. Comput Methods Appl Mech Eng 320:68–81

    Article  MathSciNet  Google Scholar 

  • Sheikholeslami M, Ganji DD, Javed MY, Ellahi R (2015) Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. J Magn Magn Mater 374:36–43

    Article  Google Scholar 

  • Sheikholeslami M, Shehzad SA, Li Z, Shafee A (2018a) Numerical modeling for Alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law. Int J Heat Mass Transf 127:614–622

    Article  Google Scholar 

  • Sheikholeslami M, Li Z, Shafee A (2018b) Lorentz forces effect on NEPCM heat transfer during solidification in a porous energy storage system. Int J Heat Mass Transf 127:665–674

    Article  Google Scholar 

  • Sheikholeslami M, Jafaryar M, Saleem S, Li Z, Shafee A, Jiang Y (2018c) Nanofluid heat transfer augmentation and energy loss inside a pipe equipped with innovative turbulators. Int J Heat Mass Transf 126:156–163

    Article  Google Scholar 

  • Sheikholeslami M, Jafaryar M, Shafee A, Li Z (2018d) Investigation of second law and hydrothermal behavior of nanofluid through a tube using passive methods. J Mol Liq 269:407–416

    Article  Google Scholar 

  • Sheikholeslami Mohsen, Zeeshan Ahmad, Majeed Aaqib (2018e) Control volume based finite element simulation of magnetic nanofluid flow and heat transport in non-Darcy medium. J Mol Liq 268:354–364

    Article  Google Scholar 

  • Sheikholeslami M, Ghasemi A, Li Z, Shafee A, Saleem S (2018f) Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term. Int J Heat Mass Transf 126:1252–1264

    Article  Google Scholar 

  • Sheikholeslami M, Jafaryar M, Li Z (2018g) Second law analysis for nanofluid turbulent flow inside a circular duct in presence of twisted tape turbulators. J Mol Liq 263:489–500

    Article  Google Scholar 

  • Sheikholeslami M, Darzi M, Li Z (2018h) Experimental investigation for entropy generation and energy loss of nano-refrigerant condensation process. Int J Heat Mass Transf 125:1087–1095

    Article  Google Scholar 

  • Sheikholeslami M, Shehzad SA, Li Z (2018i) Water based nanofluid free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorenz forces. Int J Heat Mass Transf 125:375–386

    Article  Google Scholar 

  • Sheikholeslami M, Shehzad SA, Abbasi FM, Li Z (2018j) Nanofluid flow and forced convection heat transfer due to Lorentz forces in a porous lid driven cubic enclosure with hot obstacle. Comput Methods Appl Mech Eng 338:491–505

    Article  MathSciNet  Google Scholar 

  • Sheikholeslami M, Shehzad SA, Li Z (2018k) Nanofluid heat transfer intensification in a permeable channel due to magnetic field using Lattice Boltzmann method. Phys B Condens Matter 542:51–58

    Article  Google Scholar 

  • Sheikholeslami M, Jafaryar M, Li Z (2018l) Nanofluid turbulent convective flow in a circular duct with helical turbulators considering CuO nanoparticles. Int J Heat Mass Transf 124:980–989

    Article  Google Scholar 

  • Sheikholeslami M, Darzi M, Sadoughi MK (2018m) Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure. Int J Heat Mass Transf 122:643–650

    Article  Google Scholar 

  • Sheikholeslami M, Hayat T, Muhammad T, Alsaedi A (2018n) MHD forced convection flow of nanofluid in a porous cavity with hot elliptic obstacle by means of Lattice Boltzmann method. Int J Mech Sci 135:532–540

    Article  Google Scholar 

  • Sheikholeslami M, Hayat T, Alsaedi A (2018o) Numerical simulation for forced convection flow of MHD CuO–H2O nanofluid inside a cavity by means of LBM. J Mol Liq 249:941–948

    Article  Google Scholar 

  • Zeeshan A, Fatima A, Khalid F, Bhatti MM (2018) Interaction between blood and solid particles propagating through a capillary with slip effects. Microvasc Res 119:38–46

    Article  Google Scholar 

Download references

Acknowledgements

Above article was supported by the National Sciences Foundation of China (NSFC) (no. U1610109), Yingcai Project of CUMT (YC2017001), UOW and PAPD Vice-Chancellor’s Postdoctoral Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixiong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Ramzan, M., Shafee, A. et al. Numerical approach for nanofluid transportation due to electric force in a porous enclosure. Microsyst Technol 25, 2501–2514 (2019). https://doi.org/10.1007/s00542-018-4153-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-4153-2

Navigation