Skip to main content
Log in

In-situ 3D micro-sensor model using embedded plasmonic island for biosensors

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The design of the microsensor system for biosensors using the plasmonic island is proposed. The sensor head is formed by the stacked layers of silicon-graphene-gold materials. The dual-mode operations of the sensor can be performed using the relationship of the changes between the electron mobility and optical phase, where the exciting environment can be light intensity (phase), electrical transient, heat, pressure, flavour and smoke, The change in light phase (intensity) in silicon and conductivity (mobility) in gold layers cause change in the output measurands. The design and simulation interpretation of the sensor is presented. The sensor manipulation using the MCM arrangement is simulated and interpreted for biosensor applications 3D imaging can also be applied to the MCM function, where the 3D in situ sensor function is possible. The sensor sensitivity of 2.0 × 10−21 cm2 V−1 s−1 (mW)−1 via simulation is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aldawsari S, Wei L, Liu WK (2015) Theoretical study of hybrid guided modes in a multilayer symmetrical planar plasmonic waveguide. J Lightwave Technol 33(15):3198–3206

    Article  Google Scholar 

  • Ali J, Pornsuwancharoen N, Youplao P, Aziz MS, Chiangga S, Jaglan J, Amiri IS, Yupapin P (2018) A novel plasmonic interferometry and the potential applications. Results Phys 8:438–441

    Article  Google Scholar 

  • Amiri IS, Ali J, Yupapin PP (2012) Enhancement of FSR and finesse using add/drop filter and panda ring resonator. J Mod Phys B 26:1250034

    Article  Google Scholar 

  • Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):422–453

    Article  Google Scholar 

  • Baccarani G, Ostoja P (1975) Electron mobility empirically related to the phosphorus concentration in silicon. Solid State Electron 18(6):579–580

    Article  Google Scholar 

  • Bogaerts W, Heyn PD, Vaerenbergh TV, Vos KD, Selvaraja SK, Claes T, Dumon P, Bienstman P, Thourhoout DV, Baets R (2012) Silicon microring resonators. Laser Photonics Rev 6(1):47–73

    Article  Google Scholar 

  • Chaiwong K, Tamee K, Punthawanunt S, Suhailin FH, Aziz MS, Ali J, Singh G, Yupapin P (2017) Naked-eye 3D imaging model using the embedded micro-conjugate mirrors within the medical micro-needle device. Microsyst Technol. https://doi.org/10.1007/s00542-017-3634-z

    Google Scholar 

  • Eurenius L, Hagglund C, Olsson E, Kasemo B, Chakarov D (2008) Grating formation by metal-nanoparticle-mediated coupling of light into waveguided modes. Nat Photonics 2:360–364

    Article  Google Scholar 

  • Faruki MJ, Razak MZA, Azzuhri SR, Rahman MT, Soltanian MRK, Rahman BMA, Grattan KTV, Rue RDL, Ahmad H (2016) Effect of titanium dioxide (TiO2) nanoparticle coating on the detection performance of microfiber knot resonator sensors for relative humidity measurement. Mater Express 6:501–508

    Article  Google Scholar 

  • Felidj N, Laurent G, Aubard J, Levi G, Hohenau FA, Krenn JR, Aussenegg FR (2005) Grating-induced plasmon mode in gold nanoparticle. J Chem Phys 123(22):221103

    Article  Google Scholar 

  • Feng JV, Siu S, Roelke A, Mehta V, Rhieu SY, Tayhas G, Palmore R, Pacifici D (2011) Nanoscaleplasmonic interferometers for multispectral, high-throughput biochemical sensing. Nano Lett 12(2):602–609. https://doi.org/10.1021/nl203325s-cor1

    Article  Google Scholar 

  • Foreman MR, Swaim JD, Vollmer F (2015) Whispering gallery mode sensors. Adv Opt Photonics 7:168–240

    Article  Google Scholar 

  • Gall D (2016) Electron mean free path in elemental metals. J Appl Phys 119:085101

    Article  Google Scholar 

  • Hasan MdR, Akter S, Rifat AA, Ahmed K, Ahmed R, Subbaraman H, Abbott D (2018) Spiral photonics crystal fiber-based dual-polarized surface plasmon resonance biosensor. IEEE Sens J 18(1):133–140

    Article  Google Scholar 

  • He L, Ozdemir SK, Zhu J, Kim W, Yang L (2011) Detection single viruses and nanoparticles using whispering gallery microlasers. Nat Nanotechnol 6:428–432

    Article  Google Scholar 

  • Hourhout DV, Baets R (2012) Silicon micro-ring resonators. Laser Photon Rev 6910:47–73

    Google Scholar 

  • Lee MY, Jackson AO, Lee LK (2015) Bioinspired optical antennas: gold plant viruses. Light Sci Appl 4:e267

    Article  Google Scholar 

  • Li D, Feng J, Pacifici D (2016) Nanoscale optical interferometry with incoherent light. Sci Rep 2016:Article number 20836

    Article  Google Scholar 

  • Morrill D, Li D, Pacifici D (2010) Measuring subwavelength spatial coherence with plasmonic interferometry. Nat Photonics 10:661–687

    Google Scholar 

  • Ozbay E (2006) Plasmonics: merging photonics and electronics at the nanoscale dimensions. Science 311(5738):189–193

    Article  Google Scholar 

  • Phatharacorn P, Chiangga S, Yupapin P (2016) Analytical and simulation results of a triple micro whispering gallery mode probe system for a 3D blood flow rate sensor. Appl Opt 55(33):9504–9513

    Article  Google Scholar 

  • Phatharaworamet T, Teeka C, Jomtarak R, Mitatha S, Yupapin PP (2010) Random binary code generation using dark-bright soliton conversion control within a Panda Ring resonator. J Lightwave Technol 28(19):2804–2809

    Article  Google Scholar 

  • Phattharacorn P, Chiangga S, Ali J, Yupapin P (2018) Micro-optical probe model using integrated triple microring resonators for vertical depth identification. Microsyst Technol (accepted)

  • Pornsuwancharoen N, Youplao P, Amiri IS, Yupapin P (2017a) Electron driven mobility model by light on the stacked metal-dielectric-interfaces. Microw Opt Technol Lett 59(7):1704–1709

    Article  Google Scholar 

  • Pornsuwancharoen N, Amiri IS, Suhailin FH, Aziz MS, Ali J, Singh G, Yupapin P (2017b) Micro-current source generated by a WGM of light within a stacked silicon-graphene-Au waveguide. IEEE Photonics Technol Lett 29(21):1768–1771

    Article  Google Scholar 

  • Ren-Bing T, Hua Q, Xiao-Yu Z, Wen X (2013) Electronics driven plasmon dispersion in AlGaN/GaN high electron mobility transistors. Chin Phys B 22(11):117306

    Article  Google Scholar 

  • Sharma AK, Dominic A (2018) Influence of chemical potential on graphene-based SPR sensor’s performance. IEEE Photonics Technol Lett 30(1):95–98

    Article  Google Scholar 

  • Wang W, Ku Y (2003) The light transmission and distribution in an optical fiber coated with TiO2 particles. Chemosphere 50(8):999–1006

    Article  Google Scholar 

  • Xiao JJ, Yakubo K, Yu KW (2006) Optical switching in graded plasmonic waveguides. Appl Phys Lett 88:241111

    Article  Google Scholar 

Download references

Acknowledgements

M. S. Aziz would like to acknowledge the support and facilities through Flagship UTM Shine Project (03G82). P. Yupapin would like to acknowledge for the research facilities to Ton Duc Thang University, Vietnam. This is Prof. Ali UTM Shine cost center number is Q.J130000.2426.03G82 (Flagship UTM Shine).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Yupapin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pornsuwancharoen, N., Youplao, P., Aziz, M.S. et al. In-situ 3D micro-sensor model using embedded plasmonic island for biosensors. Microsyst Technol 24, 3631–3635 (2018). https://doi.org/10.1007/s00542-018-3798-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-3798-1

Navigation