Skip to main content
Log in

Design and experimental testing of an electro-thermal microgripper for cell manipulation

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper presents the design, fabrication and experimental characterization of an electro-thermally actuated microgripper suitable for single-cell manipulation. The analysis of the mechanical properties of cells is of great interest both in medicine and biology because the study of the cellular mechanical behaviour and resistance is necessary in these fields. Microgrippers (Bio-MEMS) have an important role in the manipulation of biological tissues and cells. In recent works, the research group simulated the mechanical behavior of grippers and the different actuation strategies. Considering the dimensional specifications and targets imposed by actuation and biocompatibility, in this paper, a microgripper based on electro-thermal actuation is studied. Starting from previous numerical results, a novel SU8 structure is designed and realized according to the micro-fabrication constraints and then the structure is simulated using the finite element method (FEM)-based thermo-structural simulations in ANSYS. Therefore, the fabrication method and steps are presented and the gripper has been developed and tested. Finally, the tip displacements of the gripper, electro-thermally actuated in different operating conditions, are compared with those obtained by means of numerical FEM simulations. A good agreement is obtained between simulations and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Al Zandi M, Voicu R-C, Muller R, Wang C (2016) Testing and characterisation of electrothermal microgrippers with embedded microheaters. In: Proc. of symposium on design, test, integration & packaging of MEMS/MOEMS-DTIP2016, Budapest, pp 256–260

  • Al-Zandi M, Wang C, Voicu R, Muller R (2017) Measurement and characterisation of displacement and temperature of polymer based electrothermal microgrippers. Microsyst Technol. doi:10.1007/s00542-017-3298-8

    Google Scholar 

  • Andersen KN, Carlson K, Petersen DH, Mølhave K, Eichhorn V, Fatikow S, Bøggild P (2008) Electrothermal microgrippers for pick-and-place operations. Microelectron Eng 85:1128–1130

    Article  Google Scholar 

  • Beyeler F, Neild A, Oberti S, Bell DJ, Sun Y, Dual J, Nelson BJ (2007) Monolithically fabricated microgripper with integrated force sensor for manipulating micro-objects and biological cells aligned in an ultrasonic field. J Microelectromech Syst 16(1):7–15

    Article  Google Scholar 

  • Chan B-D, Mateen F, Chang C-L, Icoz K, Savran CA (2012) A compact manually actuated micromanipulator. J Microelectromech Syst 21(1):7–9

    Article  Google Scholar 

  • Chan B, Icoz K, Huang W, Chang C, Savran CA (2014) On-demand weighing of single dry biological particles over a 5-order-of-magnitude dynamic range. Lab Chip 14(21):4188–4196

    Article  Google Scholar 

  • Chang H-C, Tsai JM, Tsai H-C, Fang W (2006) Design, fabrication, and testing of a 3-DOF HARM micromanipulator on (111) silicon substrate. Sens Actuators A 125:438–445

    Article  Google Scholar 

  • Chen T, Sun L, Chen L, Rong W, Li X (2010) A hybrid-type electrostatically driven microgripper with an integrated vacuum tool. Sens Actuators A 158:320–327

    Article  Google Scholar 

  • Darnell L (1990a) Baltimore, [molecular cell biology], scientific American books. W. H. Freeman and Company, New York, pp 681–951

    Google Scholar 

  • Darnell L (1990b) Baltimore, [molecular cell biology], scientific American books. W. H. Freeman and Company, New York, pp 617–638

    Google Scholar 

  • Daunton R, Wood D, Gallant AJ, Kataky R (2014) A microgripper sensor device capable of detecting ion efflux from whole cells. RSC Adv 4:50536–50541

    Article  Google Scholar 

  • Deutschinger A, Schmid U, Schneider M, Brenner W, Wanzenböck H, Volland B, Ivanov Tzv, Rangelow IW (2010) Characterization of an electro-thermal micro gripper and tip sharpening using FIB technique. Microsyst Technol. doi:10.1007/s00542-010-1110-0

    Google Scholar 

  • Giouroudi I, Hötzendorfer H, Kosel J, Andrijasevic D, Brenner W (2008) Development of a microgripping system for handling of microcomponents. Precis Eng 32:148–152

    Article  Google Scholar 

  • Huang W (2002) On the selection of shape memory alloys for actuators. Mater Design 23:11–19

    Article  Google Scholar 

  • Iamoni S, Somà A (2013) Design of cell microgripper and actuation strategy. In: Bio-MEMS and medical microdevices, Grenoble

  • Iamoni S, Somà A (2014) Design of an electro-thermally actuated cell microgripper. Microsyst Technol 20:869–877

    Article  Google Scholar 

  • Ivanova K, Ivanov T, Badar A, Volland BE, Rangelow IW, Andrijasevic D, Sümecz F, Fischer S, Spitzbart M, Brenner W, Kostic I (2006) Thermally driven microgripper as a tool for micro assembly. Microelectron Eng 83:1393–1395

    Article  Google Scholar 

  • Kohl M, Skrobanek KD (1998) Linear microactuators based on the shape memory effect. Sens Actuators A 70:104–111

    Article  Google Scholar 

  • Kohl M, Brevet B, Just E (2002) SMA microgripper system. Sens Actuators A 97–98:646–652

    Article  Google Scholar 

  • Loughlin C (1993) Sensors for industrial inspection. Springer, Berlin

    Book  Google Scholar 

  • Nah SK, Zhong ZW (2007) A microgripper using piezoelectric actuation for micro-object manipulation. Sens Actuators A 133:218–224

    Article  Google Scholar 

  • Nguyen N-T, Ho S-S, Low CL-N (2004) A polymeric microgripper with integrated thermal actuators. J Micromech Microeng 14:969–974

    Article  Google Scholar 

  • Ouyang PR, Tjiptoprodjo RC, Zhang WJ, Yang GS (2008) Micro-motion devices technology: the state of arts review. Int J Adv Manuf Technol 38:463–478

    Article  Google Scholar 

  • Solano B, Wood D (2007) Design and testing of a polymeric microgripper for cell manipulation. Microelectron Eng 84:1219–1222

    Article  Google Scholar 

  • Solano B, Rolt S, Wood D (2008) Thermal and mechanical analysis of an SU8 polymeric actuator using IR thermography. Proc Inst Mech Eng part C 222:73–86

    Article  Google Scholar 

  • Thielicke E, Obermeier E (2000) Microactuators and their technologies. Mechatronics 10:431–455

    Article  Google Scholar 

  • Voicu R-C (2016) Design, numerical simulation and experimental investigation of an SU-8 microgripper based on the cascaded V-shaped electrothermal actuators. J Phys Conf Series (JPCS) 757(1):012015

    Article  Google Scholar 

  • Voicu R, Muller R (2013) “New electro-thermally actuated micromanipulator with optimized design and FEM simulations analyses’’. In: Design, test, integration & packaging of MEMS/MOEMS (DTIP), pp 1–6

  • Voicu R, Műller R (2013) Design and FEM analysis of a new micromachined electro-thermally actuated micromanipulator. Analog Integr Circ Sig Process 78(2):313–321

    Article  Google Scholar 

  • Voicu R, Esinenco D, Müller R, Eftime L, Tibeica C (2007) Method for overcoming the unwanted displacements of an electro-thermally actuated microgripper. In: Proceedings of the 3rd International conference on multi-material micro manufacture-4M 2007, Borovets, Bulgaria, pp 39–42

  • Voicu R-C, Tibeica C, Müller R, Dinescu A, Pustan M, Birleanu C (2016) Design, simulation and testing of polymeric microgrippers with v-shaped electrothermal actuators and encapsulated hetaira. In: Proc. of IEEE international semiconductor conference CAS 2016, 10–12 October Sinaia, 2016, pp 89–92

  • Volland BE, Heerlein H, Rangelow IW (2002) Electrostatically driven microgripper. Microelectron Eng 61–62:1015–1023

    Article  Google Scholar 

  • Volland BE, Ivanova K, Ivanov Tzv, Sarov Y, Guliyev E, Persaud A, Zöllner JP, Klett S, Kostic I, Rangelow IW (2007) Duo-action electro thermal micro gripper. Microelectron Eng 84:1329–1332

    Article  Google Scholar 

  • Zhang R, Chu J, Wang H, Chen Z (2012) A multipurpose electrothermal microgripper for biological micro-manipulation. Microsyst Technol 19(1):89–97

    Article  Google Scholar 

  • Zubir MNM, Shirinzadeh B, Tian Y (2009) A new design of piezoelectric driven compliant-based microgripper for micromanipulation. Mech Mach Theory 44:2248–2264

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurelio Somà.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somà, A., Iamoni, S., Voicu, R. et al. Design and experimental testing of an electro-thermal microgripper for cell manipulation. Microsyst Technol 24, 1053–1060 (2018). https://doi.org/10.1007/s00542-017-3460-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3460-3

Navigation