Skip to main content
Log in

SiO2 caped Fe3O4 nanostructures as an active heterogeneous catalyst for 4-nitrophenol reduction

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A simple, economic and one pot synthetic protocol was followed to synthesize Fe3O4 nanostructures using partial oxidation co-precipitation method under aerobic conditions. After synthesis, the nanostructures were coated with tetraethyl orthosilicate for stabilization purpose. Later on, these nanostructures were characterized by fourier transformed infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, electron dispersive X-ray spectroscopy and atomic force microscopy to examine their size, shape and crystalline structure. The synthesized SiO2/Fe3O4 nanostructures with fine semi-spherical textures showed high heterogeneous catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol using sodium borohydride (NaBH4) under microwave radiations. The effect of Different parameters such as concentration of reducing agent (NaBH4), quantity of catalyst applied and the effect of microwave irradiation time was evaluated to obtain good results for 4-nitrophenol reduction. The 99.5% 4-nitrophenol reduction was achieved by using 100 µg of SiO2/Fe3O4 nanocatalyst in a short reaction time. Furthermore, the 4-nitrophenol reduction process utilizing SiO2/Fe3O4 nanostructures as catalyst was very economical and efficient in term of ease of synthesis, low raw materials expenditure and fast recovery/separation of the catalyst using external magnetic field. Besides these characteristics the SiO2/Fe3O4 nanocatalyst is environment-friendly and bio compatible due to its extremely low toxicity. Based on the above characteristics, the SiO2/Fe3O4 nanocatalyst can find some potential applications as heterogeneous catalyst in environmentally and industrially important reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abbar AH, Sulaymon AH, Jalhoom MG (2007) Scale-up of a fixed bed electrochemical reactor consisting of parallel screen electrode used for p-aminophenol production. Electrochim Acta 53(4):1671–1679

    Article  Google Scholar 

  • Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 44(48):7852–7872

    Article  Google Scholar 

  • Bartholomew CH (2001) Mechanisms of catalyst deactivation. Appl Catal A 212(1):17–60

    Article  Google Scholar 

  • Cai K-Y, Liu Y-S, Xu Y, Zhou H, Zhang L, Cui Y (2017) One-pot synthesis of Bi/Fe3O4 and its catalytic performances for 4-nitrophenol reduction. Bull Chem React Eng Catal 12(1):89–95

    Article  Google Scholar 

  • Campbell JL, Arora J, Cowell SF, Garg A, Eu P, Bhargava SK, Bansal V (2011) Quasi-cubic magnetite/silica core-shell nanoparticles as enhanced MRI contrast agents for cancer imaging. PLoS ONE 6(7):e21857

    Article  Google Scholar 

  • Chang Y-C, Chen D-H (2009) Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst. J Hazard Mater 165(1):664–669

    Article  Google Scholar 

  • Deng Y, Cai Y, Sun Z, Liu J, Liu C, Wei J, Zhao D (2010) Multifunctional mesoporous composite microspheres with well-designed nanostructure: a highly integrated catalyst system. J Am Chem Soc 132(24):8466–8473

    Article  Google Scholar 

  • DeSimone JM (2002) Practical approaches to green solvents. Science 297(5582):799–803

    Article  Google Scholar 

  • Du Y, Chen H, Chen R, Xu N (2004) Synthesis of p-aminophenol from p-nitrophenol over nano-sized nickel catalysts. Appl Catal A 277(1):259–264

    Article  Google Scholar 

  • Du X, Zhao C, Li X, Huang H, Wen Y, Zhang X, Li J (2017) Novel yolk-shell polymer/carbon@ Au nanocomposites by using dendrimer-like mesoporous silica nanoparticles as hard template. J Alloy Compd 700:83–91

  • Feng J, Su L, Ma Y, Ren C, Guo Q, Chen X (2013) CuFe 2 O 4 magnetic nanoparticles: a simple and efficient catalyst for the reduction of nitrophenol. Chem Eng J 221:16–24

    Article  Google Scholar 

  • Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297(5582):803–807

    Article  Google Scholar 

  • Gu S, Wunder S, Lu Y, Ballauff M, Fenger R, Rademann K, Zaccone A (2014) Kinetic analysis of the catalytic reduction of 4-nitrophenol by metallic nanoparticles. J Phys Chem C 118(32):18618–18625. doi:10.1021/jp5060606

    Article  Google Scholar 

  • Guo M, He J, Li Y, Ma S, Sun X (2016) One-step synthesis of hollow porous gold nanoparticles with tunable particle size for the reduction of 4-nitrophenol. J Hazard Mater 310:89–97

    Article  Google Scholar 

  • Hareesh K, Joshi R, Sunitha D, Bhoraskar V, Dhole S (2016) Anchoring of Ag-Au alloy nanoparticles on reduced graphene oxide sheets for the reduction of 4-nitrophenol. Appl Surf Sci 389:1050–1055

    Article  Google Scholar 

  • Harish S, Mathiyarasu J, Phani K, Yegnaraman V (2009) Synthesis of conducting polymer supported Pd nanoparticles in aqueous medium and catalytic activity towards 4-nitrophenol reduction. Catal Lett 128(1–2):197–202

    Article  Google Scholar 

  • He H, Gao C (2011) Synthesis of Fe 3 O 4/Pt nanoparticles decorated carbon nanotubes and their use as magnetically recyclable catalysts. J Nanomater 2011:11

    Google Scholar 

  • Herrera-Melián J, Martín-Rodríguez A, Ortega-Méndez A, Araña J, Doña-Rodríguez J, Pérez-Peña J (2012) Degradation and detoxification of 4-nitrophenol by advanced oxidation technologies and bench-scale constructed wetlands. J Environ Manage 105:53–60

    Article  Google Scholar 

  • Huang J, Vongehr S, Tang S, Lu H, Shen J, Meng X (2009) Ag dendrite-based Au/Ag bimetallic nanostructures with strongly enhanced catalytic activity. Langmuir 25(19):11890–11896

    Article  Google Scholar 

  • Jiang K, Zhang H-X, Yang Y-Y, Mothes R, Lang H, Cai W-B (2011) Facile synthesis of Ag@ Pd satellites–Fe 3 O 4 core nanocomposites as efficient and reusable hydrogenation catalysts. Chem Commun 47(43):11924–11926

    Article  Google Scholar 

  • Koga H, Kitaoka T (2011) One-step synthesis of gold nanocatalysts on a microstructured paper matrix for the reduction of 4-nitrophenol. Chem Eng J 168(1):420–425

    Article  Google Scholar 

  • Kojima Y, Suzuki K-I, Fukumoto K, Sasaki M, Yamamoto T, Kawai Y, Hayashi H (2002) Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide. Int J Hydrogen Energy 27(10):1029–1034

    Article  Google Scholar 

  • Kozuch S, Martin JML, Martin JML (2012) Turning over definitions in catalytic cycles. ACS Catalysis 2(12):2787–2794. doi:10.1021/cs3005264

    Article  Google Scholar 

  • Lewis LN (1993) Chemical catalysis by colloids and clusters. Chem Rev 93(8):2693–2730. doi:10.1021/cr00024a006

    Article  Google Scholar 

  • Li J, Kuang D, Feng Y, Zhang F, Xu Z, Liu M (2012) A graphene oxide-based electrochemical sensor for sensitive determination of 4-nitrophenol. J Hazard Mater 201:250–259

    Article  Google Scholar 

  • Lin F-H, Doong R-A (2011) Bifunctional Au–Fe3O4 heterostructures for magnetically recyclable catalysis of nitrophenol reduction. J Phys Chem C 115(14):6591–6598

    Article  Google Scholar 

  • Liu P, Zhao M (2009) Silver nanoparticle supported on halloysite nanotubes catalyzed reduction of 4-nitrophenol (4-NP). Appl Surf Sci 255(7):3989–3993

    Article  Google Scholar 

  • Liu C-H, Chen B-H, Hsueh C-L, Ku J-R, Jeng M-S, Tsau F (2009) Hydrogen generation from hydrolysis of sodium borohydride using Ni–Ru nanocomposite as catalysts. Int J Hydrog Energy 34(5):2153–2163

    Article  Google Scholar 

  • Liu K, Wang Y, Chen P, Zhong W, Liu Q, Li M, Wang D (2016) Noncrystalline nickel phosphide decorated poly (vinyl alcohol-co-ethylene) nanofibrous membrane for catalytic hydrogenation of p-nitrophenol. Appl Catal B 196:223–231

    Article  Google Scholar 

  • Liu X, Jiao Z, Song T, Wu M, Zhang H (2017) Surfactant-assisted selective etching strategy for generation of rattle-like mesoporous silica nanoparticles. J Colloid Interface Sci 490:497–504

    Article  Google Scholar 

  • Matusiewicz M, Czerwiński M, Kasperczyk J, Kityk I (1999) Description of spin interactions in model [Fe 6 S 6] 4 + supercluster. J Chem Phys 111(14):6446–6455

    Article  Google Scholar 

  • Naraginti S, Sivakumar A (2014) Eco-friendly synthesis of silver and gold nanoparticles with enhanced bactericidal activity and study of silver catalyzed reduction of 4-nitrophenol. Spectrochim Acta Part A Mol Biomol Spectrosc 128:357–362

    Article  Google Scholar 

  • Narayanan KB, Sakthivel N (2011) Heterogeneous catalytic reduction of anthropogenic pollutant, 4-nitrophenol by silver-bionanocomposite using Cylindrocladium floridanum. Biores Technol 102(22):10737–10740

    Article  Google Scholar 

  • Polat K, Aksu M, Pekel A (2002) Electroreduction of nitrobenzene to p-aminophenol using voltammetric and semipilot scale preparative electrolysis techniques. J Appl Electrochem 32(2):217–223

    Article  Google Scholar 

  • Poliakoff M, Anastas P (2001) A principled stance. Nature 413(6853):257

    Article  Google Scholar 

  • Qu Y, Pei X, Shen W, Zhang X, Wang J, Zhang Z, Zhou J (2017) Biosynthesis of gold nanoparticles by Aspergillum sp. WL-Au for degradation of aromatic pollutants. Low-dimens Sys Nanostruct, Physica E

    Google Scholar 

  • Quy DV, Hieu NM, Tra PT, Nam NH, Hai NH, Thai Son N, Luong NH (2013) Synthesis of silica-coated magnetic nanoparticles and application in the detection of pathogenic viruses. J Nanomater 2013:6. doi:10.1155/2013/603940

    Article  Google Scholar 

  • Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125(46):13940–13941

    Article  Google Scholar 

  • Shahwan T, Sirriah SA, Nairat M, Boyacı E, Eroğlu AE, Scott TB, Hallam KR (2011) Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J 172(1):258–266

    Article  Google Scholar 

  • Shajkumar A, Nandan B, Sanwaria S, Albrecht V, Libera M, Lee M-H, Horechyy A (2017) Silica-supported Au@ hollow-SiO 2 particles with outstanding catalytic activity prepared via block copolymer template approach. J Colloid Interface Sci 491:246–254

    Article  Google Scholar 

  • Shen J, Zhou Y, Huang J, Zhu Y, Zhu J, Yang X, Jiang H (2017) In-situ SERS monitoring of reaction catalyzed by multifunctional Fe 3 O 4@ TiO 2@ Ag-Au microspheres. Appl Catal B 205:11–18

    Article  Google Scholar 

  • Vaidya MJ, Kulkarni SM, Chaudhari RV (2003) Synthesis of p-aminophenol by catalytic hydrogenation of p-nitrophenol. Org Process Res Dev 7(2):202–208

    Article  Google Scholar 

  • Wang J, Zhang X-B, Wang Z-L, Wang L-M, Xing W, Liu X (2012) One-step and rapid synthesis of “clean” and monodisperse dendritic Pt nanoparticles and their high performance toward methanol oxidation and p-nitrophenol reduction. Nanoscale 4(5):1549–1552

    Article  Google Scholar 

  • Wang H, Dong Z, Na C (2013) Hierarchical carbon nanotube membrane-supported gold nanoparticles for rapid catalytic reduction of p-nitrophenol. ACS Sustain Chem Eng 1(7):746–752

    Article  Google Scholar 

  • Wang X, Zhao Z, Ou D, Tu B, Cui D, Wei X, Cheng M (2016) Highly active Ag clusters stabilized on TiO 2 nanocrystals for catalytic reduction of p-nitrophenol. Appl Surf Sci 385:445–452

    Article  Google Scholar 

  • Wang B, Si L, Geng J, Su Y, Li Y, Yan X, Chen L (2017a) Controllable magnetic 3D nitrogen-doped graphene gel: synthesis, characterization, and catalytic performance. Appl Catal B 204:316–323

    Article  Google Scholar 

  • Wang X, Tan F, Wang W, Qiao X, Qiu X, Chen J (2017b) Anchoring of silver nanoparticles on graphitic carbon nitride sheets for the synergistic catalytic reduction of 4-nitrophenol. Chemosphere 172:147–154

    Article  Google Scholar 

  • Wei X, Yang X-F, Wang A-Q, Li L, Liu X-Y, Zhang T, Li J (2012) Bimetallic Au–Pd alloy catalysts for N2O decomposition: effects of surface structures on catalytic activity. J Phys Chem C 116(10):6222–6232

    Article  Google Scholar 

  • Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-Controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48(1):60–103

    Article  Google Scholar 

  • Ye W, Yu J, Zhou Y, Gao D, Wang D, Wang C, Xue D (2016) Green synthesis of Pt–Au dendrimer-like nanoparticles supported on polydopamine-functionalized graphene and their high performance toward 4-nitrophenol reduction. Appl Catal B 181:371–378

    Article  Google Scholar 

  • Zhang W, Xiao X, An T, Song Z, Fu J, Sheng G, Cui M (2003) Kinetics, degradation pathway and reaction mechanism of advanced oxidation of 4-nitrophenol in water by a UV/H2O2 process. J Chem Technol Biotechnol 78(7):788–794

    Article  Google Scholar 

  • Zhang H, Wang H, Cao J, Ni Y (2017a) Hierarchical Cu-Ni-Pt dendrites: two-step electrodeposition and highly catalytic performances. J Alloy Compd 698:654–661

    Article  Google Scholar 

  • Zhang J, Yao T, Guan C, Zhang N, Huang X, Cui T, Zhang X (2017b) One-step preparation of magnetic recyclable quinary graphene hydrogels with high catalytic activity. J Colloid Interface Sci 491:72–79

    Article  Google Scholar 

  • Zhu Y, Shen J, Zhou K, Chen C, Yang X, Li C (2010) Multifunctional magnetic composite microspheres with in situ growth Au nanoparticles: a highly efficient catalyst system. J Phys Chem C 115(5):1614–1619

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Tariq Shah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, M.T., Balouch, A., Sirajuddin et al. SiO2 caped Fe3O4 nanostructures as an active heterogeneous catalyst for 4-nitrophenol reduction. Microsyst Technol 23, 5745–5758 (2017). https://doi.org/10.1007/s00542-017-3431-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3431-8

Keywords

Navigation