Skip to main content

Advertisement

Log in

AC electrothermal actuation mechanism for on-chip mixing of high ionic strength fluids

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The ability to maintain a relative low temperature rise, portability and also achieve fast mixing process is major advantage for high ionic strength processing, where high conductive fluids handled by AC electrothermal (ACET) effects. In this study we examine the frequency dependency of AC electroosmotic (ACEO) and ACET effects, to generate high efficient temperature gradients and corresponding conductivity/permittivity gradients with relatively low temperature rise. We drive the electrodes by amplitude-modulated (AM) sine-wave and it generates non-uniform electric field with small temperature rise, in comparison with the simple sine-wave. The excitation parameters such as voltage amplitude A, sine-wave frequency f c , and also modulation frequency f m , were optimized to achieving both high mixing efficiency and low temperature rise. Technological details of proposed silicon/PDMS fabrication method has been discussed in details for the AC Electrothermally-driven micromixer and a set of numerical simulations were done for the microactuator. An effective ACET flow along with the low temperature rise is observed in optimal frequency range of 0.1 MHz < f c  < 9 MHz. A full mixing efficiency achieved by using only three pairs of the electrodes and with the maximum temperature rise of 5.5 K. The reduction in temperature rise is very important for extending ACET mixing applications and device portability. As a proof of chaotic regime, two particles released inside the channel and particle tracing accomplished, the results showed that the particles were stretched and folded. The technological details of fabrication process and thermal effects handling has been discussed in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Barzegar S, Mirzajani H, Ghavifekr HB (2015) A new linearly tunable RF MEMS varactor with latching mechanism for low voltage and low power reconfigurable networks. Wirel Pers Commun 83(3):2249–2265

    Article  Google Scholar 

  • Biddiss E, Erickson D, Li D (2004) Heterogeneous surface charge enhanced micromixing for electrokinetic flows. Anal Chem 76(11):3208–3213

    Article  Google Scholar 

  • Cao J, Cheng P, Hong FJ (2008) A numerical study of an electrothermal vortex enhanced micromixer. Microfluid Nanofluid 5(1):13–21. doi:10.1007/s10404-007-0201-4

    Article  Google Scholar 

  • Chen CK, Cho CC (2008) Electrokinetically driven flow mixing utilizing chaotic electric fields. Microfluid Nanofluid 5:785–793. doi:10.1007/s10404-008-0286-4

    Article  Google Scholar 

  • Coleman JT, McKechnie J, Sinton D (2006) High-efficiency electrokinetic micromixing through symmetric sequential injection and expansion. Lab Chip 6:1033–1039. doi:10.1039/B602085B

    Article  Google Scholar 

  • Erickson D, Li D (2002) Influence of surface heterogeneity on electrokinetically driven microfluidic mixing. Langmuir 18:1883–1892. doi:10.1021/la015646z

    Article  Google Scholar 

  • Fu LM, Yang RJ, Lin CH, Chien YS (2005) A novel microfluidic mixer utilizing electrokinetic driving forces under low switching frequency. Electrophoresis 26:1814–1824

    Article  Google Scholar 

  • Gad-el-Hak M (2002) The MEMS handbook, vol 17. CRC Press, LLC, Boca Raton

    MATH  Google Scholar 

  • García-Sánchez P, Ferney M, Ren Y, Ramos A (2012) Actuation of co-flowing electrolytes in a microfluidic system by microelectrode arrays. Microfluid Nanofluid 13(3):441–449. doi:10.1007/s10404-012-0969-8

    Article  Google Scholar 

  • Green NG, Ramos A, González A, Castellanos A, Morgan H (2001) Electrothermally induced fluid flow on microelectrodes. J Electrostat 53:71–87. doi:10.1016/S0304-3886(01)00132-2

    Article  Google Scholar 

  • Hong FJ, Cao J, Cheng P (2011) A parametric study of AC electrothermal flow in microchannels with asymmetrical interdigitated electrodes. Int Commun Heat Mass Transf 38(3):275–279. doi:10.1016/j.icheatmasstransfer.2010.11.004

    Article  Google Scholar 

  • Huang KR, Chang JS (2013) Three dimensional simulation on binding efficiency of immunoassay for a biosensor with applying electrothermal effect. Heat Mass Transf 49(11):1647–1658. doi:10.1007/s00231-013-1214-z

    Article  Google Scholar 

  • Huang KR, Chang JS, Chao SD, Wu KC, Yang CK, Lai CY, Chen SH (2008) Simulation on binding efficiency of immunoassay for a biosensor with applying electrothermal effect. J Appl Phys 104(6):064702. doi:10.1063/1.2981195

    Article  Google Scholar 

  • Huang SH, Hsueh HJ, Hung KY (2010) Configurable AC electroosmotic generated in-plane microvortices and pumping flow in microchannels. Microfluid Nanofluid 8:187–195. doi:10.1007/s10404-009-0453-2

    Article  Google Scholar 

  • Ilkhechi AK, Mirzajani H, Aghdam EN, Ghavifekr HB (2015a) A new electrostatically actuated rotary three-state DC-contact RF MEMS switch for antenna switch applications. Microsyst Technol 1–13. doi:10.1007/s00542-015-2714-1

  • Ilkhechi AK, Mirzajani H, Aghdam EN, Ghavifekr HB (2015b) A novel SPDT rotary RF MEMS switch for low loss and power efficient signal routing. IETE J Res 62(1):68–80. doi:10.1080/03772063.2015.1083896

  • Ilkhechi AK, Mirzajani H, Aghdam EN, Ghavifekr HB (2016) A new electrothermally actuated 3-state high isolation and low power RF MEMS switch with latching mechanism. In: 2016 24th Iranian conference on electrical engineering (ICEE), IEEE

  • Ivanoff CS, Wu JJ, Mirzajani H, Cheng C, Yuan Q, Kevorkyan S, Gaydarova R, Tomlekova D (2016) AC electrokinetic drug delivery in dentistry using an interdigitated electrode assembly powered by inductive coupling. Biomed Microdevices 18(5):84

    Article  Google Scholar 

  • Khalil K, Sabry YM, Hassan K, Shebl A, Soliman M, Eltagoury YM, Khalil D (2016) In-line optical MEMS phase modulator and application in ring laser frequency modulation. IEEE J Quantum Electron 52(8):1–8

    Article  Google Scholar 

  • Landau LD, Lifshitz EM (2013) Fluid mechanics: landau and lifshitz: course of theoretical physics. Elsevier, New York

    Google Scholar 

  • Lastochkin D, Zhou R, Wang P, Ben Y, Chang HC (2004) Electrokinetic micropump and micromixer design based on ac faradaic polarization. J Appl Phys 96:1730–1733

    Article  Google Scholar 

  • Lian M, Wu J (2009) Microfluidic flow reversal at low frequency by AC electrothermal effect. Microfluid Nanofluid 7(6):757–765. doi:10.1007/s10404-009-0433-6

    Article  Google Scholar 

  • Lide DR (ed) (2012) CRC handbook of chemistry and physics, 92nd edn. CRC Press, London, pp. 4–74, 6–187

  • Lim YC, Kouzani AZ, Duan W (2010) Lab-on-a-chip: a component view. Microsyst Technol 16:1995–2015

    Article  Google Scholar 

  • Loucaides N, Ramos A, Georghiou GE (2007) Novel systems for configurable AC electroosmotic pumping. Microfluid Nanofluid 3:709–714. doi:10.1007/s10404-007-0168-1

    Article  Google Scholar 

  • Loucaides N, Ramos A, Georghiou GE (2012) Configurable AC electroosmotic pumping and mixing. Microelectron Eng 90:47–50. doi:10.1016/j.mee.2011.04.007

    Article  Google Scholar 

  • Mehdipoor M, Vafaie RH, Pourmand A, Poorreza E, Ghavifekr HB (2012) A novel four phase AC electroosmotic micropump for lab-on-a-chip applications. In: 2012 8th international symposium on mechatronics and its applications (ISMA). IEEE, pp 1–6

  • Mirzajani H, Nasiri M, Ghavifekr HB (2012) A new design of MEMS-based wideband frequency reconfigurable microstrip patch antenna. In: 2012 8th international symposium on mechatronics and its applications (ISMA), IEEE

  • Mirzajani H, Ghavifekr HB, Aghdam EN, Demaghsi H, Vafaie RH (2015) Enhancement of mechanical resonant modes by miniaturization of frequency tunable MEMS-enabled microstrip patch antenna. Microsyst Technol 21(4):773–783

    Article  Google Scholar 

  • Mirzajani H, Cheng C, Wu J, Chen J, Eda S, Aghdam EN, Ghavifekr HB (2016) A highly sensitive and specific capacitive aptasensor for rapid and label-free trace analysis of bisphenol A (BPA) in canned foods. Biosens Bioelectron. doi:10.1016/j.bios.2016.09.109

  • Mirzajani H, Cheng C, Wu J, Ivanoff CS, Aghdam EN, Ghavifekr HB (2016b) Design and characterization of a passive, disposable wireless AC-electroosmotic lab-on-a-film for particle and fluid manipulation. Sens Actuators B Chem 235:330–342

    Article  Google Scholar 

  • Morgan H, Green NG (2003) AC electrokinetics: colloids and nanoparticles (no. 2). Research Studies Press, Baldock

    Google Scholar 

  • Nasiri M, Mirzajani H, Atashzaban E, Ghavifekr HB (2013) Design and simulation of a novel micromachined frequency reconfigurable microstrip patch antenna. Wirel Pers Commun 72(1):259–282

    Article  Google Scholar 

  • Ottino JM (1989) The kinematics of mixing: stretching, chaos, and transport, vol 3. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Papadopoulos VE, Kefala IN, Kaprou G, Kokkoris G, Moschou D, Papadakis G, Tserepi A (2014) A passive micromixer for enzymatic digestion of DNA. Microelectron Eng 124:42–46. doi:10.1016/j.mee.2014.04.011

    Article  Google Scholar 

  • Ramos A, Morgan H, Green NG, Castellanos A (1998) Ac electrokinetics: a review of forces in microelectrode structures. J Phys D Appl Phys 31(18):2338. doi:10.1088/0022-3727/31/18/021

    Article  Google Scholar 

  • Ryu KS, Shaikh K, Goluch E, Fan Z, Liu C (2004) Micro magnetic stir-bar mixer integrated with parylene microfluidic channels. Lab Chip 4:608–613. doi:10.1039/B403305A

    Article  Google Scholar 

  • Sasaki N, Kitamori T, Kim HB (2006) AC electroosmotic micromixer for chemical processing in a microchannel. Lab Chip 6(4):550–554

    Article  Google Scholar 

  • Vafaie RH, Ghavifekr HB (2016) Configurable ACET micro-manipulator for high conductive mediums by using a novel electrode engineering. Microsyst Technol 1–11. doi:10.1007/s00542-015-2806-y

  • Vafaie RH, Mehdipoor M, Pourmand A, Poorreza E, Ghavifekr HB (2013a) An electroosmotically-driven micromixer modified for high miniaturized microchannels using surface micromachining. Biotechnol Bioprocess Eng 18(3):594–605. doi:10.1007/s12257-012-0431-5

    Article  Google Scholar 

  • Vafaie RH, Mahdipour M, Mirzajani H, Ghavifekr HB (2013b) Numerical simulation of mixing process in tortuous microchannel. Sens Transducers 151(4):30

    Google Scholar 

  • Vafaie RH, Ghavifekr HB, Lintel H, Brugger J, Renaud P (2016) Bi‐directional AC electrothermal micropump for on‐chip biological applications. Electrophoresis. doi:10.1002/elps.201500404

  • Wu J, Lian M, Yang K (2007) Micropumping of biofluids by alternating current electrothermal effects. Appl Phys Lett 90(23):234103-1–234103-3. doi:10.1063/1.2746413

    Google Scholar 

  • Yang Z, Matsumoto S, Goto H, Matsumoto M, Maeda R (2001) Ultrasonic micromixer for microfluidic systems. Sens Actuators A 93:266–272. doi:10.1016/S0924-4247(01)00654-9

    Article  Google Scholar 

  • Yuan Q, Yang K, Wu J (2014) Optimization of planar interdigitated microelectrode array for biofluid transport by AC electrothermal effect. Microfluid Nanofluid 16(1–2):167–178. doi:10.1007/s10404-013-1231-8

    Article  Google Scholar 

  • Zhang R, Dalton C, Jullien GA (2011) Two-phase AC electrothermal fluidic pumping in a coplanar asymmetric electrode array. Microfluid Nanofluid 10(3):521–529. doi:10.1007/s10404-010-0686-0

    Article  Google Scholar 

  • Zhanshe G, Fucheng C, Boyu L, Le C, Chao L, Ke S (2015) Research development of silicon MEMS gyroscopes: a review. Microsyst Technol 21(10):2053–2066

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ahar Branch, Islamic Azad University for the financial support of this research. The authors are very grateful to Dr. Habib Badri Ghavifekr for fruitful discussions and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Majid Ghandchi or Reza Hadjiaghaie Vafaie.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

M. Ghandchi and R. H. Vafaie contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghandchi, M., Vafaie, R.H. AC electrothermal actuation mechanism for on-chip mixing of high ionic strength fluids. Microsyst Technol 23, 1495–1507 (2017). https://doi.org/10.1007/s00542-016-3188-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-3188-5

Keywords

Navigation