Skip to main content
Log in

A micro-resonator based magnetometer

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper presents the preliminary work to demonstrate the feasibility of a miniature resonator based magnetometer. This magnetometer consists of a thin film of ferromagnetic material sputtered on a cantilever with a magnetic moment aligned along the length of the cantilever. As the resonator vibrates under a magnetic field, the magnetostatic interaction induces a moment on the cantilever that stiffens its spring constant thus shifting its resonance frequency. This principle of operation using a cobalt–nickel thin film and a quartz tuning fork allows developing a miniature (1 mm2), low power (1 mW), low cost, and precise (10 nT) magnetometer, that machining technology is compatible with micromachined inertial MEMS sensor technology. It is targeted to be included in miniature IMUS with accelerometers and gyroscopes for guidance and navigation applications. First a theoretical model is presented to obtain analytical expressions of the scale factor and resolution of the sensor. Then the cobalt–nickel sputtering method is shown as well as the characterization of its magnetic moment under magnetic field for different film thicknesses and magnetization methods. The realized miniature quartz tuning forks on which are sputtered the magnetic thin films are presented and characterized, especially in terms of supplementary mechanical damping due to the thin film. Finally, sputtered resonators are connected to electronic oscillators to build magnetometer prototypes that are measured in terms of scale factor and resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Christou CT, Jacyna GM (2010) Vehicle detection and localization using Unattended Ground Magnetometer Sensors. In: 13th conference on information fusion (FUSION). doi:10.1109/ICIF.2010.5711899

  • DiLella D, Whitman LJ, Colton RJ, Kenny TW, Kaiser WJ, Vote EC, Podosek JA, Miller LM (2000) A micromachined magnetic-field sensor based on an electron tunneling displacement transducer. Sens Actuat A Phys 86(1–2):8–20. doi:10.1016/S0924-4247(00)00303-4

    Article  Google Scholar 

  • Dufour I, Lochon F, Heinrich SM, Josse F (2007) Effect of coating viscoelasticity on quality factor and limit of detection of microcantilever chemical sensors. IEEE Sens J 7(2):230

    Article  Google Scholar 

  • Edelstein A (2007) Advances in magnetometry. J Phys: Condens Matter 19(16):165217

    Google Scholar 

  • Ettelt D, Rey P, Jourdan G, Walther A, Robert P, Delamare J (2014) 3D magnetic field sensor concept for use in inertial measurement units (IMUs). J Microelectromech Syst 23(2):324–333

    Article  Google Scholar 

  • Fine JE, Edelstein AS, Hull DM (2007) AMR magnetometer data on moving military vehicles at aberdeen proving ground. Army Research Laboratory, Adelphi

    Google Scholar 

  • Kyynäräinen J, Saarilahti J, Kattelus H, Kärkkäinen A, Meinander T, Oja A, Pekko P, Seppä H, Suhonen M, Kuisma H, Ruotsalainen S, Tilli M (2008) A 3D micromechanical compass. Sens Actuat A Phys 142(2):561–568

    Article  Google Scholar 

  • Lenz E (1990) A review of magnetic sensors. In: Proceedings of IEEE, vol 78

  • Levy R, Gaudineau V (2010) Phase noise analysis and performance of the vibrating beam accelerometer. In: IEEE international on frequency control symposium (FCS), 2010, pp 511–514

  • Li M, Rouf VT, Thompson MJ, Horsley D (2012) Three-axis Lorentz-force magnetic sensor for electronic compass applications. J Microelectromechan Syst 21(4):1002–1010

    Article  Google Scholar 

  • Mohamadabadi K (2013) Anisotropic magnetoresistance magnetometer for inertial navigation systems. Electronics. Thesis of école Polytechnique. https://tel.archives-ouvertes.fr/tel-00946970

  • Ren D, Wu L, Yan M, Cui M, You Z, Hu M (2009) Design and analyses of a MEMS based resonant magnetometer. Sensors 9(9):6951–6966

    Article  Google Scholar 

  • Rochus V, Jansen R, Tilmans HAC, Rottenberg X (2012) Poly-SiGe-based MEMS xylophone bar magnetometer. IEEE Sens Conf. doi:10.1109/ICSENS.2012.6411484

    Google Scholar 

  • Rouf VT, Li M, Horsley DA (2013) Area-efficient three axis MEMS Lorentz force magnetometer. IEEE Sens J 13(11):4474–4481

    Article  Google Scholar 

  • van Honschoten JW, Koelmans WW, Konings SM, Abelmann L, Elwenspoek MC (2008) Nanotesla torque magnetometry using a microcantilever

  • Willemin M, Rossel C, Brugger J, Despont MH, Rothuizen H, Vettiger P, Hofer J, Keller H (1998) Piezoresistive cantilever designed for torque magnetometry. J Appl Phys 83(3):1163–1170. doi:10.1063/1.366811

    Article  Google Scholar 

  • Yang HH, Myung NV, Yee J, Park DY, Yoo BY (2002) Ferromagnetic micromechanical magnetometer. Sens Actuat A Phys. doi:10.1016/S0924-4247(01)00809-3

    Google Scholar 

  • Zhang W, Lee JE-Y (2013) A horseshoe micromachined resonant magnetic field sensor with high quality factor. IEEE Electron Device Lett 34(10):1310–1312

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Levy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levy, R., Perrier, T., Kayser, P. et al. A micro-resonator based magnetometer. Microsyst Technol 23, 3937–3943 (2017). https://doi.org/10.1007/s00542-015-2790-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2790-2

Keywords

Navigation