Skip to main content
Log in

An adaptive notch filter for suppressing mechanical resonance in high track density disk drives

  • Technical paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In disk drive servo system, a notch filter is usually used to suppress mechanical resonance of an actuator. However, the resonance frequency differs from drive to drive due to manufacturing tolerance and varies with temperature even within a single drive. In this paper, we present an adaptive digital notch filter that can identify the resonance frequency of the actuator quickly and can adjust automatically its center frequency. For the fast identification of resonance frequency, a new estimation filter and its tuning algorithm are developed. Also, we give a rigorous analysis for the convergence of our tuning algorithm. We furthermore present some experimental results using a commercially available hard disk drive in order to demonstrate the practical use of our work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Clare DL, Frees GM, Serrano LJ (2000) Head selectable servo notch filter and method for improving servo system performance. US Patent 6,122,125

    Google Scholar 

  • Fan LS, Ottesen HH, Reiley TC, Wood RW (1995) Magnetic recording head positioning at very high track densities using a microactuator-based two-stage servo system. IEEE Trans Indust Electron 42:222–233

    Article  Google Scholar 

  • Franklin GF, Powell JD, Workman ML (1998) Digital control of dynamic systems, 3rd edn. Addison Wesley, Longman

    Google Scholar 

  • Haykin S (2002) Adaptive filter theory, 4th edn. Prentice Hall, Englewoodcliffs

    Google Scholar 

  • Lee HS (2001) Controller optimization for minimum position error signals of hard disk drives. IEEE Trans Indust Electron 48:945–950

    Article  Google Scholar 

  • Semba T, Kagami N, Tokizono A (2001) Method and apparatus for suppressing mechanical resonance in a disk drive storage device using a notch filter. US Patent 6,219,196

    Google Scholar 

  • Widrow B, Stearns SD (1985) Adaptive signal processing. Prentice Hall, Englewoodcliffs

    Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Hyocheon Academic Research Fund of the Cheju National University Development Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Ik Kang.

Appendix

Appendix

1.1 < Proof of (15) and (16) >

We first prove Eq. 15. By Eq. 13, there exist positive integers k i , \(i = 1,2, \cdots ,N\) such that

$$ \omega _i = k_i \omega _{\text{d}} ,\quad i = 1,2, \cdots ,N $$
(62)

Define \(c_i ,\phi _i ,\) \(i = 1,2, \cdots ,N\) by

$$ c_i = a_i \left| {H\left( {{\text{e}}^{j\omega _i T_{\text{s}} } } \right)} \right|,\quad \phi _i = \theta _i + \angle H\left( {{\text{e}}^{j\omega _i T_{\text{s}} } } \right). $$
(63)

Then, by Eqs. 12, 14, 62, and Eq. 63,

$$ \begin{aligned} y_{k + L} & = \sum\limits_{i = 1}^N {c_i \cos \left( {\omega _i T_{\text{s}} (k + L) + \phi _i } \right)} = \sum\limits_{i = 1}^N {c_i \cos \left( {\omega _i T_{\text{s}} k + 2\pi \omega _i /\omega _{\text{d}} + \phi _i } \right)} \\ & = \sum\limits_{i = 1}^N {c_i \cos \left( {\omega _i T_{\text{s}} k + 2\pi k_i + \phi _i } \right)} = \sum\limits_{i = 1}^N {c_i \cos \left( {\omega _i T_{\text{s}} k + \phi _i } \right)} = y_k . \\ \end{aligned} $$
(64)

This completes the proof of Eq. 15.

Next, we prove Eq. 16. By Eqs. 12 and 63,

$$ |y_k |^2 = \sum\limits_{i = 1}^N {|c_i |^2 \cos ^2 \left( {\omega _i T_{\text{s}} k + \phi _i } \right)} + \sum\limits_{j = 1}^N {\sum\limits_{\begin{subarray}{l} i = 1 \\ i \ne j \end{subarray}}^N {c_i c_j \cos \left( {\omega _i T_{\text{s}} k + \phi _i } \right)\cos \left( {\omega _j T_{\text{s}} k + \phi _j } \right).} } $$
(65)

Summing both sides of Eq. 65 over one period L, we can obtain

$$ \sum\limits_{k = 1}^L {|y_k |^2 } = \sum\limits_{i = 1}^N {|c_i |^2 \sum\limits_{k = 1}^L {\cos ^2 \left( {\omega _i T_{\text{s}} k + \phi _i } \right)} } + \sum\limits_{j = 1}^N {\sum\limits_{\begin{subarray}{l} i = 1 \\ i \ne j \end{subarray}}^N {c_i c_j } } \sum\limits_{k = 1}^L {\cos \left( {\omega _i T_{\text{s}} k + \phi _i } \right)\cos \left( {\omega _j T_{\text{s}} k + \phi _j } \right)} $$
(66)

From trigonometric properties, we find that

$$ \sum\limits_{k = 1}^L {\cos ^2 \left( {\omega _i T_{\text{s}} k + \phi _i } \right)} = \frac{L} {2} + \sum\limits_{k = 1}^L {\cos \left( {2\omega _i T_{\text{s}} k + 2\phi _i } \right)} $$
(67)
$$ \begin{aligned} & \sum\limits_{k = 1}^L {\cos \left( {\omega _i T_{\text{s}} k + \phi _i } \right)\cos \left( {\omega _j T_{\text{s}} k + \phi _j } \right)} \\ & = \frac{1} {2}\sum\limits_{k = 1}^L {\left\{ {\cos \left( {(\omega _i - \omega _j )T_{\text{s}} k + \phi _i - \phi _j } \right) + \cos \left( {\left( {\omega _i + \omega _j } \right)T_{\text{s}} k + \phi _i + \phi _j } \right)} \right\}} . \\ \end{aligned} $$
(68)

From Eq. 14 and Eq. 62, we see that the functions cos(2ω i Tsk+2φ i ), cos((ω i −ω j )T s k i −φ j ), cos((ω i j )Tsk i j ) are all periodic functions with period L. Hence, it follows that the sum of each function over one period L is zero. Hence, by Eq. 67 and Eq. 68, we have

$$ \sum\limits_{k = 1}^L {\cos ^2 \left( {\omega _i T_{\text{s}} k + \phi _i } \right)} = \frac{L} {2},\quad \sum\limits_{k = 1}^L {\cos \left( {\omega _i T_{\text{s}} k + \phi _i } \right)\cos \left( {\omega _j T_{\text{s}} k + \phi _j } \right)} = 0. $$
(69)

Hence, we readily see from Eq. 66 and Eq. 69 that

$$\sum\limits_{k = 1}^L {|y_k |^2} \;\;\; = \;\;\;\frac{L}{2}\,\,\sum\limits_{i = 1}^N {{\kern 1pt} |c_i |^2 {\kern 1pt} {\kern 1pt}} $$
(70)

This along with Eq. 63 completes the proof of Eq. 16.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, CI., Kim, CH. An adaptive notch filter for suppressing mechanical resonance in high track density disk drives. Microsyst Technol 11, 638–652 (2005). https://doi.org/10.1007/s00542-005-0534-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-005-0534-4

Keywords

Navigation