Skip to main content
Log in

Decreased beta-adrenergic receptor

  • Original Articles
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

We investigated alterations in the number and affinity of cardiac beta-adrenergic receptors during hemorrhagic shock. Forty male Wistar rats were divided into two groups: (1) a shock group (n=20), in which mean arterial blood pressure was decreased to 40\2-50 mmHg by bleeding and kept constant for 6 h; and (2) a control group (n=20), which underwent a sham operation. We used (\t-) [3H]dihydroalprenolol for the determination of the number and affinity of beta-adrenergic receptors in myocardial membranes. An additional 2.5 rats were used for determination of plasma epinephrine and norepinephrine concentrations. Scatchard analysis showed a 20% reduction (P<0.05) in beta-adrenergic receptor density in the shock group (70.3\+-3.5 fmol-mg\t-1 protein) compared to the control group (90.0\+-4.8 fmol-mg\t-1 protein) but no significant change in the affinity (2.52\+-0.06 vs. 2.31\+-0.09 nmol.l\t-1, control vs. shock). Plasma catecholamine concentrations were increased significantly at 1, 2, 4 and 6 h after the start of hypotension. These data suggest that increased levels of plasma catecholamines in hemorrhagic shock may be correlated a significant loss of beta-adrenergic receptors in rat myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stiles GL, Caron MG, Lefkowitz RJ: β-Adrenergic receptors: biochemical mechanisms of physiological regulation. Physiol Rev 64:661–743, 1984

    CAS  PubMed  Google Scholar 

  2. Harden TK: Agonist-induced desensitization of the β-Adrenergic receptor-linked adenylate cyclase. Pharmacol Rev 35:5–32, 1983

    CAS  PubMed  Google Scholar 

  3. Karliner JS, Simpson PC, Honbo N, Woloszyn W: Mechanisms and time course of beta1 adrenoceptor desensitisation m mammalian cardiac myocytes. Cardiovasc Res 20:221–228, 1986

    Article  CAS  PubMed  Google Scholar 

  4. Chang HY, Klein RM, Kunos G: Selective desensitization of cardiac beta adrenoceptors by prolonged in vivo infusion of catecholamines in rats. J Pharmacol Exp Ther 221:784–789, 1982

    CAS  PubMed  Google Scholar 

  5. Romano FD, Jones SB: Characteristics of myocardial β-adrenergic receptors during endotoxicosis in the rat. Am J Physiol 251:R359-R364, 1986

    CAS  PubMed  Google Scholar 

  6. Shepherd RE, McDonough KH, Burns AH: Mechanism of cardiac dysfunction in hearts from endotoxin-treated rats. Circ shock 19:371–384, 1986

    CAS  PubMed  Google Scholar 

  7. Shepherd RE, Lang CH, McDonough KH: Myocardial adrenergic responsiveness after lethal and nonlethal doses of endotoxin. Am J Physiol 252:H41O-H416, 1987

    Google Scholar 

  8. Thomas JA, Marks BH: Plasma norepinephrine in congestive heart failure. Am J Cardiol 41:233–243, 1978

    Article  CAS  PubMed  Google Scholar 

  9. Wiggers CJ: The physiology of shock. New York: Commonwealth Fund, 1950

    Google Scholar 

  10. Mukherjee A, Wong TM, Buja LM, Lefkowitz RJ, Willerson JT: Beta adrenergic and muscarinic cholinergic receptors in canine myocardium: effects of ischemia. J Clin Invest 64: 1423–1428, 1979

    Article  CAS  PubMed  Google Scholar 

  11. Mukherjee A, Bush LR, McCoy KE, Duke RJ, Hagler H, Buja LM, Willerson JT: Relationship between β-adrenergic receptor numbers and physiological responses during experimental canme myocardial ischemia. Circ Res 50:735–741, 1982

    CAS  PubMed  Google Scholar 

  12. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the folin phenol reagent. J BioI Chem 193:265–275, 1951

    CAS  Google Scholar 

  13. Scatchard G: The attractions of proteins for small molecules and ions. Ann NY Acad Sci 51:660–672, 1949

    Article  CAS  Google Scholar 

  14. Ingebretsen OC, Flatmark T: Active and passive transport of dopamine in chromaffin granule ghosts isolated from bovine adrenal medulla. J BioI Chem 254:3833–3839, 1979

    CAS  Google Scholar 

  15. Jackman GP, Carson VJ, Bobik A, Skews H: Simple and sensitive procedure for the assay of serotonin and catecholamines in brain by high-performance liquid chromatography using fluorescence detection. J Chromatogr 182:277–284, 1980

    Article  CAS  PubMed  Google Scholar 

  16. Rothe CF, Selkurt EE: Cardiac and peripheral failure in hemorrhagic shock in the dog. Am J Physiol 207:203–214, 1964

    CAS  PubMed  Google Scholar 

  17. Zweifach BW, Fronek A: The interplay of central and peripheral factors in irreversible hemorrhagic shock. Prog Cardiovasc Dis 18:147–180, 1975

    Article  CAS  PubMed  Google Scholar 

  18. Koyama S, Aibiki M, Kanai K, Fujita T, Miyakawa K: Role of central nervous system m renal nerve activity during prolonged hemorrhagic shock in dogs. Am J Physiol 254:R761-R769, 1988

    CAS  PubMed  Google Scholar 

  19. Wiggers CJ: Present status of the shock problem. Physiol Rev 22:74–123, 1942

    Google Scholar 

  20. Sarnoff SJ, Case RB, Waithe PE, Isaacs JP: Insufficient coronary flow and myocardial failure as a complicating factor in late hemorrhagic shock. Am J Physiol 176:439–444, 1954

    CAS  PubMed  Google Scholar 

  21. Brand ED, Lefer AM: Myocardial depressant factor in plasma from cats in irreversible post-oligemic shock. Proc Soc Exp Biol Med 122:200–203, 1966

    CAS  PubMed  Google Scholar 

  22. Glaviano VV, Klouda MA: Myocardial catecholamines and stimulation of the stellate ganglion in hemorrhagic shock. Am J Physiol 209:751–756, 1965

    CAS  PubMed  Google Scholar 

  23. Warner M, Smith JM, Eaton R, Robbins A, Hess ML: The excitation-contraction coupling system of the myocardium in canine hemorrhagic shock. Circ Shock 8:563–572, 1981

    CAS  PubMed  Google Scholar 

  24. Hackel DB, Ratliff NB, Mikat E: The heart in shock. Circ Res 35:805–811, 1974

    CAS  PubMed  Google Scholar 

  25. Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sageman WS, Lurie K, Billingham ME, Harrison DC, Stinson EB: Decreased catecholamine sensitivity and β-adrenergic-receptor density in failing human hearts. N Engl J Med 307:205–211, 1982

    Article  CAS  PubMed  Google Scholar 

  26. Lefkowitz RJ, Caron MG: Regulation of adrenergic receptor function by phosphorylation. Curr Top Cell Regul 28:209–231, 1986

    CAS  PubMed  Google Scholar 

  27. Farnebo LO, Hallman H, Hamberger B, Jonsson G: Catecholamines and hemorrhagic shock in awake and anesthetized rats. Circ Shock 6:109–118, 1979

    CAS  PubMed  Google Scholar 

  28. Marsh JD, Margolis TI, Kim D: Mechanism of diminished contractile response to catecholamines during acidosis. Am J Physiol 254:H20-H27, 1988

    CAS  PubMed  Google Scholar 

  29. Maisel AS, Motulsky HJ, Insel PA: Externalization of β-adrenergic receptors promoted by myocardial ischemia. Science 230:183–186, 1985

    Article  CAS  PubMed  Google Scholar 

  30. Schörnig A, Dart AM Dietz R, Mayer E. Kübler W: Release of endogenous catecholamines in the ischemic myocardium of the rat. Part A: Locally mediated release. Circ Res 55:689–701, 1984

    Google Scholar 

  31. Maisel AS, Motulsky HJ, Ziegler MG, Insel PA: Ischemia- and agonist-induced changes in α and β-adrenergic receptor traffic in guinea pig hearts. Am J Physiol 253:H1159-H1166, 1987

    CAS  PubMed  Google Scholar 

  32. Limas CJ, Limas C: Rapid recovery of cardiac β-adrenergic receptors after isoproterenol-induced “down”-regulation. Circ Res 55:524–531, 1984

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Mizumachi, K., Yahagi, M., Kawabata, H. et al. Decreased beta-adrenergic receptor. J Anesth 5, 404–411 (1991). https://doi.org/10.1007/s0054010050404

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s0054010050404

Key words

Navigation