Skip to main content
Log in

Thromboelastometry guided fibrinogen replacement therapy in cardiac surgery: a retrospective observational study

  • Short Communication
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

This retrospective, observational study compared the impact of a point-of-care rotational thromboelastometry (ROTEM®) method versus conventional bleeding management in terms of postoperative (24-h) blood loss, intraoperative and postoperative (24-h) transfusion requirement and length of stay in the postoperative intensive care unit (ICU) in patients undergoing cardiac surgery. Forty consecutive patients undergoing cardiac surgery under ROTEM®-guided hemostatic management were enrolled; the control population included 40 selected patients undergoing similar interventions without ROTEM® monitoring. Significantly more patients in the thromboelastometry group versus the control group received fibrinogen (45 vs 10 %; p < 0.0001), while fewer received a transfusion (40 vs 72.5 %; p < 0.0033). Compared with control group patients, those in the thromboelastometry group had less postoperative bleeding (285 vs 393 mL; p < 0.0001), a shorter time from cardiopulmonary bypass discontinuation to skin suture (79.3 vs 92.6 min; p = 0.0043) and a shorter stay in the ICU (43.7 vs 52.5 h; p = 0.0002). In our preliminary experience, ROTEM®-guided bleeding management was superior to conventional management of bleeding in patients undergoing complex cardiac surgery with cardiopulmonary bypass in terms of reduced postoperative blood loss, transfusion requirement, and length of ICU stay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Görlinger K, Shore-Lesserson L, Dirkmann D, Hanke AA, Rahe-Meyer N, Tanaka KA. Management of hemorrhage in cardiothoracic surgery. J Cardiothorac Vasc Anesth. 2013;27:S20–34.

    Article  PubMed  Google Scholar 

  2. Makar M, Taylor J, Zhao M, Farrohi A, Trimming M, D’Attellis N. Perioperative coagulopathy, bleeding, and hemostasis during cardiac surgery: a comprehensive review. ICU Dir. 2010;1:17–27.

    Article  Google Scholar 

  3. Bolliger D, Görlinger K, Tanaka KA. Pathophysiology and treatment of coagulopathy in massive hemorrhage and hemodilution. Anesthesiology. 2010;113:1205–19.

    Article  PubMed  Google Scholar 

  4. Esper SA, Levy JH, Waters JH, Welsby IJ. Extracorporeal membrane oxygenation in the adult: a review of anticoagulation monitoring and transfusion. Anesth Analg. 2014;118:731–43.

    Article  CAS  PubMed  Google Scholar 

  5. Murphy GJ, Pike K, Rogers CA, Wordsworth S, Stokes EA, Angelini GD, Reeves GD. TITRe2 Investigators. Liberal or restrictive transfusion after cardiac surgery. N Engl J Med. 2015;372:997–1008.

    Article  CAS  PubMed  Google Scholar 

  6. Murphy GJ, Reeves BC, Rogers CA, Rizvi SI, Culliford L, Angelini GD. Increased mortality, postoperative morbidity, and cost after red blood cell transfusion in patients having cardiac surgery. Circulation. 2007;116:2544–52.

    Article  PubMed  Google Scholar 

  7. Moulton MJ, Creswell LL, Mackey ME, Cox JL, Rosenbloom M. Reexploration for bleeding is a risk factor for adverse outcomes after cardiac operations. J Thorac Cardiovasc Surg. 1996;111:1037–46.

    Article  CAS  PubMed  Google Scholar 

  8. Goodnough LT. Risks of blood transfusion. Crit Care Med. 2003;31:S678–86.

    Article  PubMed  Google Scholar 

  9. Christensen MC, Krapf S, Kempel A, von Heymann C. Costs of excessive postoperative hemorrhage in cardiac surgery. J Thorac Cardiovasc Surg. 2009;138:687–93.

    Article  PubMed  Google Scholar 

  10. Weber CF, Görlinger K, Meininger D, Herrmann E, Bingold T, Moritz A, Cohn LH, Zacharowski K. Point-of-care testing: a prospective, randomized clinical trial of efficacy in coagulopathic cardiac surgery patients. Anesthesiology. 2012;117:531–47.

    Article  PubMed  Google Scholar 

  11. Luddington RJ. Thrombelastography/thromboelastometry. Clin Lab Haematol. 2005;27:81–90.

    Article  CAS  PubMed  Google Scholar 

  12. Görlinger K, Dirkmann D, Hanke AA, Kamler M, Kottenberg E, Thielmann M, Jakob H, Peters J. First-line therapy with coagulation factor concentrates combined with point-of-care coagulation testing is associated with decreased allogeneic blood transfusion in cardiovascular surgery: a retrospective, single-center cohort study. Anesthesiology. 2011;115:1179–91.

    PubMed  Google Scholar 

  13. Nakayama Y, Nakajima Y, Tanaka KA, Sessler DI, Maeda S, Iida J, Ogawa S, Mizobe T. Thromboelastometry-guided intraoperative haemostatic management reduces bleeding and red cell transfusion after paediatric cardiac surgery. Br J Anaesth. 2015;114:91–102.

    Article  CAS  PubMed  Google Scholar 

  14. Kawashima S, Suzuki Y, Sato T, Kikura M, Katoh T, Sato S. Four-group classification based on fibrinogen level and fibrin polymerization associated with postoperative bleeding in cardiac surgery. Clin Appl Thromb Hemost. 2016;22:648–55.

    Article  CAS  PubMed  Google Scholar 

  15. Reinhofer M, Brauer M, Franke U, Barz D, Marx G, Losche W. The value of rotation thromboelastometry to monitor disturbed perioperative haemostasis and bleeding risk in patients with cardiopulmonary bypass. Blood Coagul Fibrinolysis. 2008;19:212–9.

    Article  PubMed  Google Scholar 

  16. Görlinger K, Fries D, Dirkmann D, Weber CF, Hanke AA, Schochl H. Reduction of fresh frozen plasma requirements by perioperative point-of-care coagulation management with early calculated goal-directed therapy. Transfus Med Hemother. 2012;39:104–13.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Girdauskas E, Kempfert J, Kuntze T, Borger MA, Enders J, Fassl J, Falk V, Mohr FW. Thromboelastometrically guided transfusion protocol during aortic surgery with circulatory arrest: a prospective, randomized trial. J Thorac Cardiovasc Surg. 2010;140(1117–24):e2.

    Google Scholar 

  18. Ranucci M, Baryshnikova E, Crapelli GB, Rahe-Meyer N, Menicanti L, Frigiola A. Randomized, double-blinded, placebo-controlled trial of fibrinogen concentrate supplementation after complex cardiac surgery. J Am Heart Assoc. 2015;4:e002066.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hanna JM, Keenan JE, Wang H, Andersen ND, Gaca JG, Lombard FW, Welsby IJ, Hughes GC. Use of human fibrinogen concentrate during proximal aortic reconstruction with deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 2016;151:376–82.

    Article  CAS  PubMed  Google Scholar 

  20. Ternström L, Radulovic V, Karlsson M, Baghaei F, Hyllner M, Bylock A, Hansson KM, Jeppsson A. Plasma activity of individual coagulation factors, hemodilution and blood loss after cardiac surgery: a prospective observational study. Thromb Res. 2010;126:e128–33.

    Article  PubMed  Google Scholar 

  21. Ranucci M, Baryshnikova E. Fibrinogen supplementation after cardiac surgery: insights from the Zero-Plasma trial (ZEPLAST). Br J Anaesth. 2016;116:618–23.

    Article  CAS  PubMed  Google Scholar 

  22. Rahe-Meyer N. Fibrinogen concentrate in the treatment of severe bleeding after aortic aneurysm graft surgery. Thromb Res. 2011;128(Suppl 1):S17–9.

    Article  PubMed  Google Scholar 

  23. Rahe-Meyer N, Hanke A, Schmidt DS, Hagl C, Pichlmaier M. Fibrinogen concentrate reduces intraoperative bleeding when used as first-line hemostatic therapy during major aortic replacement surgery: results from a randomized, placebo-controlled trial. J Thorac Cardiovasc Surg. 2013;145:S178–85.

    Article  CAS  PubMed  Google Scholar 

  24. Song JG, Jeong SM, Jun IG, Lee HM, Hwang GS. Five-minute parameter of thromboelastometry is sufficient to detect thrombocytopenia and hypofibrinogenaemia in patients undergoing liver transplantation. Br J Anaesth. 2014;112:290–7.

    Article  CAS  PubMed  Google Scholar 

  25. Perez-Ferrer A, Vicente-Sanchez J, Carceles-Baron MD, Van der Linden P, Faraoni D. Early thromboelastometry variables predict maximum clot firmness in children undergoing cardiac and non-cardiac surgery. Br J Anaesth. 2015;115:896–902.

    Article  CAS  PubMed  Google Scholar 

  26. Rahe-Meyer N, Solomon C, Hanke A, Schmidt DS, Knoerzer D, Hochleitner G, Sørensen B, Hagl C, Pichlmaier M. Effects of fibrinogen concentrate as first-line therapy during major aortic replacement surgery: a randomized, placebo-controlled trial. Anesthesiology. 2013;118:40–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Vasques.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest relevant to the study. This study was not economically supported. The authors thank Ray Hill, an independent medical writer, who provided language editing and journal styling prior to submission. This assistance was supported by CSL Behring, Italy.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasques, F., Spiezia, L., Manfrini, A. et al. Thromboelastometry guided fibrinogen replacement therapy in cardiac surgery: a retrospective observational study. J Anesth 31, 286–290 (2017). https://doi.org/10.1007/s00540-016-2271-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-016-2271-5

Keywords

Navigation