Skip to main content

Advertisement

Log in

TRPV4 ion channel as important cell sensors

  • Invited Review Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

This review provides a summary of the physiological significance of the TRPV4 ion channel. Although TRPV4 was initially characterized as an osmosensor, we found that TRPV4 can also act as a thermosensor or a mechanosensor in brain neurons or epithelial cells in the urinary bladder. Here, we summarize the newly characterized functions of TRPV4, including the research progress that has been made toward our understanding of TRPV4 physiology, and discuss other recent data pertaining to TRPV4. It is thought that TRPV4 may be an important drug target based on its broad expression patterns and important physiological functions. Possible associations between diseases and TRPV4 are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shibasaki K. Physiological significance of TRPV2 as a mechanosensor, thermosensor and lipid sensor. J Physiol Sci. 2016;66(5):359–65.

    Article  CAS  PubMed  Google Scholar 

  2. Clapham DE. TRP channels as cellular sensors. Nature (Lond). 2003;426:517–24.

    Article  CAS  Google Scholar 

  3. Tominaga M, Caterina MJ. Thermosensation and pain. J Neurobiol. 2004;61:3–12.

    Article  PubMed  Google Scholar 

  4. Levine JD, Alessandri-Haber N. TRP channels: targets for the relief of pain. Biochim Biophys Acta. 2007;1772:989–1003.

    Article  CAS  PubMed  Google Scholar 

  5. Chung MK, Jung SJ, Oh SB. Role of TRP channels in pain sensation. Adv Exp Med Biol. 2011;704:615–36.

    Article  CAS  PubMed  Google Scholar 

  6. Cao E, Liao M, Cheng Y, Julius D. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature (Lond). 2013;504:113–8.

    Article  CAS  Google Scholar 

  7. Paulsen CE, Armache JP, Gao Y, Cheng Y, Julius D. Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature (Lond). 2015;520:511–7.

    Article  CAS  Google Scholar 

  8. Ristoiu V, Shibasaki K, Uchida K, Zhou Y, Ton BH, Flonta ML, Tominaga M. Hypoxia-induced sensitization of transient receptor potential vanilloid 1 involves activation of hypoxia-inducible factor-1 alpha and PKC. Pain. 2011;152:936–45.

    Article  CAS  PubMed  Google Scholar 

  9. Fleig A, Penner R. The TRPM ion channel subfamily: molecular, biophysical and functional features. Trends Pharmacol Sci. 2004;25:633–9.

    Article  CAS  PubMed  Google Scholar 

  10. Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol. 2000;2:695–702.

    Article  CAS  PubMed  Google Scholar 

  11. Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell. 2000;103:525–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lacampagne A, Gannier F, Argibay J, Garnier D, Le Guennec JY. The stretch-activated ion channel blocker gadolinium also blocks L-type calcium channels in isolated ventricular myocytes of the guinea-pig. Biochim Biophys Acta. 1994;1191:205–8.

    Article  CAS  PubMed  Google Scholar 

  13. Nilius B, Prenen J, Wissenbach U, Bodding M, Droogmans G. Differential activation of the volume-sensitive cation channel TRP12 (OTRPC4) and volume-regulated anion currents in HEK-293 cells. Pflugers Arch. 2001;443:227–33.

    Article  CAS  PubMed  Google Scholar 

  14. Goldenberg NM, Ravindran K, Kuebler WM. TRPV4: physiological role and therapeutic potential in respiratory diseases. Naunyn Schmiedebergs Arch Pharmacol. 2015;388:421–36.

    Article  CAS  PubMed  Google Scholar 

  15. Ryskamp DA, Jo AO, Frye AM, Vazquez-Chona F, MacAulay N, Thoreson WB, Krizaj D. Swelling and eicosanoid metabolites differentially gate TRPV4 channels in retinal neurons and glia. J Neurosci. 2014;34:15689–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature (Lond). 2003;424:434–8.

    Article  CAS  Google Scholar 

  17. Watanabe H, Vriens J, Suh SH, Benham CD, Droogmans G, Nilius B. Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem. 2002;277:47044–51.

    Article  CAS  PubMed  Google Scholar 

  18. Guler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M. Heat-evoked activation of the ion channel, TRPV4. J Neurosci. 2002;22:6408–14.

    CAS  PubMed  Google Scholar 

  19. Chung MK, Lee H, Caterina MJ. Warm temperatures activate TRPV4 in mouse 308 keratinocytes. J Biol Chem. 2003;278:32037–46.

    Article  CAS  PubMed  Google Scholar 

  20. Shibasaki K, Suzuki M, Mizuno A, Tominaga M. Effects of body temperature on neural activity in the hippocampus: regulation of resting membrane potentials by transient receptor potential vanilloid 4. J Neurosci. 2007;27:1566–75.

    Article  CAS  PubMed  Google Scholar 

  21. Peier AM, Reeve AJ, Andersson DA, Moqrich A, Earley TJ, Hergarden AC, Story GM, Colley S, Hogenesch JB, McIntyre P, Bevan S, Patapoutian, A. A heat-sensitive TRP channel expressed in keratinocytes. Science. 2002;296:2046–9.

    Article  CAS  PubMed  Google Scholar 

  22. Mandadi S, Sokabe T, Shibasaki K, Katanosaka K, Mizuno A, Moqrich A, Patapoutian A, Fukumi-Tominaga T, Mizumura K, Tominaga M. TRPV3 in keratinocytes transmits temperature information to sensory neurons via ATP. Pflugers Arch. 2009;458:1093–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sokabe T, Fukumi-Tominaga T, Yonemura S, Mizuno A, Tominaga M. The TRPV4 channel contributes to intercellular junction formation in keratinocytes. J Biol Chem. 2010;285:18749–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kida N, Sokabe T, Kashio M, Haruna K, Mizuno Y, Suga Y, Nishikawa K, Kanamaru A, Hongo M, Oba A, Tominaga M. Importance of transient receptor potential vanilloid 4 (TRPV4) in epidermal barrier function in human skin keratinocytes. Pflugers Arch. 2012;463:715–25.

    Article  CAS  PubMed  Google Scholar 

  25. Chen Y, Fang Q, Wang Z, Zhang JY, MacLeod AS, Hall RP, Liedtke WB. Transient receptor potential vanilloid 4 ion channel functions as a pruriceptor in epidermal keratinocytes to evoke histaminergic itch. J Biol Chem. 2016;291:10252–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Alessandri-Haber N, Yeh JJ, Boyd AE, Parada CA, Chen X, Reichling DB, Levine JD. Hypotonicity induces TRPV4-mediated nociception in rat. Neuron. 2003;39:497–511.

    Article  CAS  PubMed  Google Scholar 

  27. Alessandri-Haber N, Dina OA, Yeh JJ, Parada CA, Reichling DB, Levine JD. Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J Neurosci. 2004;24:4444–52.

    Article  CAS  PubMed  Google Scholar 

  28. Todaka H, Taniguchi J, Satoh J, Mizuno A, Suzuki M. Warm temperature-sensitive transient receptor potential vanilloid 4 (TRPV4) plays an essential role in thermal hyperalgesia. J Biol Chem. 2004;279:35133–8.

    Article  CAS  PubMed  Google Scholar 

  29. Grant AD, Cottrell GS, Amadesi S, Trevisani M, Nicoletti P, Materazzi S, Altier C, Cenac N, Zamponi GW, Bautista-Cruz F, Lopez CB, Joseph EK, Levine JD, Liedtke W, Vanner S, Vergnolle N, Geppetti P, Bunnett NW. Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J Physiol. 2007;578:715–33.

    Article  CAS  PubMed  Google Scholar 

  30. Zhao P, Lieu T, Barlow N, Metcalf M, Veldhuis NA, Jensen DD, Kocan M, Sostegni S, Haerteis S, Baraznenok V, Henderson I, Lindstrom E, Guerrero-Alba R, Valdez-Morales EE, Liedtke W, McIntyre P, Vanner SJ, Korbmacher C, Bunnett NW. Cathepsin S causes inflammatory pain via biased agonism of PAR2 and TRPV4. J Biol Chem. 2014;289:27215–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Akiyama T, Ivanov M, Nagamine M, Davoodi A, Carstens MI, Ikoma A, Cevikbas F, Kempkes C, Buddenkotte J, Steinhoff M, Carstens E. Involvement of TRPV4 in serotonin-evoked scratching. J Invest Dermatol. 2016;136:154–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shibasaki K, Tominaga M, Ishizaki Y. Hippocampal neuronal maturation triggers post-synaptic clustering of brain temperature-sensor TRPV4. Biochem Biophys Res Commun. 2015;458:168–73.

    Article  CAS  PubMed  Google Scholar 

  33. Shibasaki K, Sugio S, Takao K, Yamanaka A, Miyakawa T, Tominaga M, Ishizaki Y. TRPV4 activation at the physiological temperature is a critical determinant of neuronal excitability and behavior. Pflugers Arch. 2015;467:2495–507.

    Article  CAS  PubMed  Google Scholar 

  34. Shibasaki K, Ishizaki Y, Mandadi S. Astrocytes express functional TRPV2 ion channels. Biochem Biophys Res Commun. 2013;441:327–32.

    Article  CAS  PubMed  Google Scholar 

  35. Shibasaki K, Ikenaka K, Tamalu F, Tominaga M, Ishizaki Y. A novel subtype of astrocytes expressing TRPV4 (transient receptor potential vanilloid 4) regulates neuronal excitability via release of gliotransmitters. J Biol Chem. 2014;289:14470–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Konno M, Shirakawa H, Iida S, Sakimoto S, Matsutani I, Miyake T, Kageyama K, Nakagawa T, Shibasaki K, Kaneko S. Stimulation of transient receptor potential vanilloid 4 channel suppresses abnormal activation of microglia induced by lipopolysaccharide. Glia. 2012;60:761–70.

    Article  PubMed  Google Scholar 

  37. Takayama Y, Shibasaki K, Suzuki Y, Yamanaka A, Tominaga M. Modulation of water efflux through functional interaction between TRPV4 and TMEM16A/anoctamin 1. FASEB J. 2014;28:2238–48.

    Article  CAS  PubMed  Google Scholar 

  38. Imura A, Tsuji Y, Murata M, Maeda R, Kubota K, Iwano A, Obuse C, Togashi K, Tominaga M, Kita N, Tomiyama K, Iijima J, Nabeshima Y, Fujioka M, Asato R, Tanaka S, Kojima K, Ito J, Nozaki K, Hashimoto N, Ito T, Nishio T, Uchiyama T, Fujimori T. alpha-Klotho as a regulator of calcium homeostasis. Science. 2007;316:1615–8.

    Article  CAS  PubMed  Google Scholar 

  39. Narita K, Sasamoto S, Koizumi S, Okazaki S, Nakamura H, Inoue T, Takeda S. TRPV4 regulates the integrity of the blood–cerebrospinal fluid barrier and modulates transepithelial protein transport. FASEB J. 2015;29:2247–59.

    Article  CAS  PubMed  Google Scholar 

  40. Gevaert T, Vriens J, Segal A, Everaerts W, Roskams T, Talavera K, Owsianik G, Liedtke W, Daelemans D, Dewachter I, Van Leuven F, Voets T, De Ridder D, Nilius B. Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding. J Clin Invest. 2007;117:3453–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mochizuki T, Sokabe T, Araki I, Fujishita K, Shibasaki K, Uchida K, Naruse K, Koizumi S, Takeda M, Tominaga M. The TRPV4 cation channel mediates stretch-evoked Ca2+ influx and ATP release in primary urothelial cell cultures. J Biol Chem. 2009;284:21257–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. O’Neil RG, Heller S. The mechanosensitive nature of TRPV channels. Pflugers Arch. 2005;451:193–203.

    Article  CAS  PubMed  Google Scholar 

  43. Sidhaye VK, Guler AD, Schweitzer KS, D'Alessio F, Caterina MJ, King LS. Transient receptor potential vanilloid 4 regulates aquaporin-5 abundance under hypotonic conditions. Proc Natl Acad Sci USA. 2006;103:4747–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mizuno A, Matsumoto N, Imai M, Suzuki M. Impaired osmotic sensation in mice lacking TRPV4. Am J Physiol Cell Physiol. 2003;285:C96–101.

    Article  CAS  PubMed  Google Scholar 

  45. Liedtke W, Friedman JM. Abnormal osmotic regulation in trpv4−/− mice. Proc Natl Acad Sci USA. 2003;100:13698–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Du J, Ma X, Shen B, Huang Y, Birnbaumer L, Yao X. TRPV4, TRPC1, and TRPP2 assemble to form a flow-sensitive heteromeric channel. FASEB J. 2014;28:4677–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nilius B, Owsianik G. Channelopathies converge on TRPV4. Nat Genet. 2010;42:98–100.

    Article  CAS  PubMed  Google Scholar 

  48. Rock MJ, Prenen J, Funari VA, Funari TL, Merriman B, Nelson SF, Lachman RS, Wilcox WR, Reyno S, Quadrelli R, Vaglio A, Owsianik G, Janssens A, Voets T, Ikegawa S, Nagai T, Rimoin DL, Nilius B, Cohn DH. Gain-of-function mutations in TRPV4 cause autosomal dominant brachyolmia. Nat Genet. 2008;40:999–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author acknowledges the following funding sources: Grants-in-Aid for Scientific Research (KAKENHI Project No. 15H05934 ‘Thermal Biology’ and 15H03000) from the Ministry of Education, Culture, Sports, Science and Technology, Japan; by a Grant from Uehara Memorial Foundation; by a Grant from Takeda Science Foundation, Tokyo, Japan; by a Grant from the Sumitomo Foundation; by a Grant from the Brain Science Foundation; by a Grant from Narishige Neuroscience Research Foundation; by a Grant from Salt Science Research Foundation No. 14C2; and by a Grant from the Ichiro Kanehara Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Shibasaki.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibasaki, K. TRPV4 ion channel as important cell sensors. J Anesth 30, 1014–1019 (2016). https://doi.org/10.1007/s00540-016-2225-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-016-2225-y

Keywords

Navigation