Skip to main content
Log in

Influence of apneic oxygenation on cardiorespiratory system homeostasis

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to elucidate the magnitude of variations in oxygenation indices and the pattern of hemodynamic changes in response to the net effect of tracheal apneic oxygenation (AO) with a view to define the safe time limit of its application.

Methods

After obtaining Animal Research Ethics Committee approval, AO was applied in 12 piglets for 40 min. Arterial (a) and mixed venous (v) blood samples for oxygen (O2) and carbon dioxide (CO2) tension (PaO2/PvO2, PaCO2/PvCO2), O2 saturation (SaO2/SvO2), pHa, base excess (BEa), and bicarbonate (HCO3a) determination and for alveolar O2 tension (PAO2), PaO2/FiO2 and PaO2/PAO2 ratio, arterial–mixed venous O2 content (AVDO2), and O2 extraction ratio (O2ER) estimation were collected on anesthesia induction, 10, 20, 30, and 40 min during AO and 10 and 20 min after reconnection to the ventilator. Concomitant hemodynamic data were obtained.

Results

Besides PvO2 and PAO2, AO adversely influenced PaO2 (248–113 mmHg), PaCO2 (35–145 mmHg), PvCO2, PaO2/FiO2, and PaO2/PAO2 in a time-depended fashion, whereas SvO2, AVDO2, and O2ER were minimally affected. P(a − v)CO2 was reversed throughout AO. Acid–base status derangement, consisting of HCO3a elevation, BEa widening, and acidemia (pH 6.9) maximized 40 min after AO. During AO, heart rate, systemic and pulmonary circulation pressures, and cardiac output were progressively elevated, whereas systemic vascular resistance was reduced. All the studied parameters reverted almost to baseline within the 20-min period of ventilator reconnection.

Conclusion

Tracheal AO for 40 min ensures acceptable blood oxygenation, promotes notable hypercapnic acidosis, and consequent transient hemodynamic alterations, which are almost completely reversible after reconnection to the ventilator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Watson JNR, Szarko R, Mackenzie FC, Sequeira JA, Barnas MG. Continuous endobronchial insufflation during internal mammary artery harvest. Anesth Analg. 1992;75:219–25.

    Article  PubMed  CAS  Google Scholar 

  2. Lee SC. Improvement of gas exchange by apneic oxygenation with nasal prong during fiberoptic intubation in fully relaxed patients. J Korean Med Sci. 1998;13:582–6.

    PubMed Central  PubMed  CAS  Google Scholar 

  3. Lang CJ, Heckmann JG. Apnea testing for the diagnosis of brain death. Acta Neurol Scand. 2005;112:358–69.

    Article  PubMed  CAS  Google Scholar 

  4. Weingard SD, Levitan RM. Preoxygenation and prevention of desaturation during emergency airway management. Ann Emerg Med. 2012;59:165–75.

    Article  Google Scholar 

  5. Mort TC. Emergency tracheal intubation: complications associated with repeated laryngoscopic attempts. Anesth Analg. 2004;99:607–13.

    Article  PubMed  Google Scholar 

  6. Taha SK, Siddik-Sayyid SM, El-Khatib MF, Dagher CM, Hakki MA, Baraka AS. Nasopharyngeal oxygen insufflation following pre-oxygenation using the four deep breath technique. Anaesthesia. 2006;61:427–30.

    Article  PubMed  CAS  Google Scholar 

  7. Engström J, Hedenstierna G, Larsson A. Pharyngeal oxygen administration increases the time to serious desaturation at intubation in acute lung injury: an experimental study. Crit Care. 2010;14:R93.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Ramachandran SK, Cosnowski A, Shanks A, Turner CR. Apneic oxygenation during prolonged laryngoscopy in obese patients: a randomized, controlled trial of nasal oxygen administration. J Clin Anesth. 2010;22:164–8.

    Article  PubMed  Google Scholar 

  9. Baraka AS, Taha SK, Siddik-Sayyid SM, Kanazi GE, El-Khatib MF, Dagher CM, Chehade J-MA, Abdallah FW, Hajj RE. Supplementation of preoxygenation in morbidly obese patients using nasopharyngeal oxygen insufflation. Anaesthesia. 2007;62:769–73.

    Article  PubMed  CAS  Google Scholar 

  10. Smith RB, Babinsky ME, Bunengin L, Gilbert J, Swartzman S, Dirting J. Continuous flow apneic ventilation. Acta Anaesthesiol Scand. 1984;28:631–9.

    Article  PubMed  CAS  Google Scholar 

  11. Burwen DR, Watson J, Brown R, Josa M, Slutsky AS. Effect of cardiogenic oscillations on gas mixing during tracheal insufflation of oxygen. J Appl Physiol. 1986;60:965–71.

    Article  PubMed  CAS  Google Scholar 

  12. Cook TM, Wolf AR, Henderson JW. Changes in blood-gas tensions during apnoeic oxygenation in paediatric patients. Br J Anaesth. 1998;81:338–42.

    Article  PubMed  CAS  Google Scholar 

  13. Frumin JM, Epstein RM, Cohen G. Apneic oxygenation in man. Anesthesiology. 1959;20:789–98.

    Article  PubMed  CAS  Google Scholar 

  14. Ingenito E, Kamm RD, Watson JW, Slutsky AS. A model of constant-flow ventilation in a dog lung. J Appl Physiol. 1988;64:2150–9.

    Article  PubMed  CAS  Google Scholar 

  15. Dincer HE, O’Neill W. Deleterious effects of sleep-disordered breathing on the heart and vascular system. Respiration. 2006;73:124–30.

    Article  PubMed  Google Scholar 

  16. Ebata T, Watanabe Y, Amaha K, Hosaka Y, Takagi S. Haemodynamic changes during the apnoea test for diagnosis of brain death. Can J Anaesth. 1991;38:436–40.

    Article  PubMed  CAS  Google Scholar 

  17. Fraioli RL, Sheffer LA, Steffenson JL. Pulmonary and cardiovascular effects of apneic oxygenation in man. Anesthesiology. 1973;39:588–96.

    Article  PubMed  CAS  Google Scholar 

  18. Draper WB, Whitehead RW. Diffusion respiration in the dog anesthetized by pentothal sodium. Anesthesiology. 1944;5:262–73.

    Article  CAS  Google Scholar 

  19. Enghoff H, Holmdahl MH, Risholm L. Diffusion respiration in man. Nature. 1951;168:830.

    Article  PubMed  CAS  Google Scholar 

  20. Holmdahl MH. Pulmonary uptake of oxygen, acid base metabolism and circulation during prolonged apnoea. Acta Chir Scand Suppl. 1956;212:1–128.

    PubMed  CAS  Google Scholar 

  21. Nielsen ND, Kjaergaard B, Koefoed-Nielsen J, Steensen CO, Larsson A. Apneic oxygenation combined with extracorporeal arteriovenous carbon dioxide removal provides sufficient gas exchange in experimental lung injury. ASAIO J. 2008;54:401–5.

    Article  PubMed  CAS  Google Scholar 

  22. Nielsen ND, Granfeldt A, Kjaergaard B, Vistisen ST, Larsson A. A new method for reducing the risk of oxygen toxicity in apneic oxygenation with extracorporeal CO2 removal. Intensive Care Med. 2009;35(Suppl. 1):S188.

    Google Scholar 

  23. Hostman S, Engstrom J, Sellgren F, Hedenstierna G, Larsson A. Non-toxic alveolar oxygen concentration without hypoxemia during apnoeic oxygenation: an experimental study. Acta Anaesthesiol Scand. 2011;55:1078–84.

    Article  PubMed  CAS  Google Scholar 

  24. Nielsen ND, Andersen G, Kjaergaard B, Staerkind ME, Larsson A. Alveolar accumulation/concentration of nitrogen during apneic oxygenation with arteriovenous carbon dioxide removal. ASAIO J. 2010;56:30–4.

    Article  PubMed  CAS  Google Scholar 

  25. Agarwal A, Singh PK, Dhiraj S, Pandey CM, Singh U. Oxygen in air (FiO2 0.4) improves gas exchange in young healthy patients during general anesthesia. Can J Anaesth. 2002;49:1040–3.

    Article  PubMed  Google Scholar 

  26. Shapiro B. The apnea–PaCO2 relationship: some clinical and medico-legal considerations. J Clin Anesth. 1989;5:323–7.

    Article  Google Scholar 

  27. Eger EI, Severinghaus JW. The rate of rise of PaCO2 in the apneic anesthetized patient. Anesthesiology. 1961;22:419–25.

    Article  PubMed  CAS  Google Scholar 

  28. Laffey JG, Kavanagh BP. Carbon dioxide and the critically ill—too little of a good thing? Lancet. 1999;354:1283–6.

    Article  PubMed  CAS  Google Scholar 

  29. Rigg CD, Crickshank S. Carbon dioxide during and after the apnea test—an illustration of the Haldane effect. Anaesthesia. 2001;56:377.

    Article  PubMed  CAS  Google Scholar 

  30. Solsona JF, Diaz Y, Gracia MP, Gener J, Vázquez A. PaCO2 becomes greater than PvCO2 during apnoea testing for brain death diagnosis. Anaesthesia. 2010;65:306–15.

    Article  Google Scholar 

  31. Blaze CA, Robinson NE. Apneic oxygenation in anesthetized ponies and horses. Vet Res Commun. 1987;11:281–91.

    Article  PubMed  CAS  Google Scholar 

  32. Nunn JF. The effects of changes in the carbon dioxide tension. In: Nunn’s applied respiratory physiology, 4th edn. UK: Butterworth-Heinemann; 1993. pp. 518–528.

  33. Millar RA. Plasma adrenaline and noradrenaline during diffusion respiration. J Physiol. 1960;150:79–90.

    PubMed Central  PubMed  CAS  Google Scholar 

  34. Moudgil R, Michelakis E, Archer S. Hypoxic pulmonary vasoconstriction. J Appl Physiol. 2005;98:390–403.

    Article  PubMed  CAS  Google Scholar 

  35. Lynch F, Sweeney M, O’Regan RG, McLoughlin P. Hypercapnia-induced contraction in isolated pulmonary arteries is endothelium-dependent. Respir Physiol. 2000;121:65–74.

    Article  PubMed  CAS  Google Scholar 

  36. Mackenzie CF, Barnas G, Nesbitt S. Tracheal insufflation of oxygen at low flow: capabilities and limitations. Anesth Analg. 1990;71:684–90.

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgia G. Tsaousi.

About this article

Cite this article

Kolettas, A.A., Tsaousi, G.G., Grosomanidis, V. et al. Influence of apneic oxygenation on cardiorespiratory system homeostasis. J Anesth 28, 172–179 (2014). https://doi.org/10.1007/s00540-013-1714-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-013-1714-5

Keywords

Navigation