Skip to main content
Log in

Transcutaneous \( P_{CO_2 } \) monitors are more accurate than end-tidal \( P_{CO_2 } \) monitors

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

The accuracy of monitors for measuring transcutaneous \( P_{CO_2 } \) (Tc\( P_{CO_2 } \)), end-tidal \( P_{CO_2 } \) (Et\( P_{CO_2 } \)), and nasal Et\( P_{CO_2 } \) was evaluated.

Methods

The measuring devices included a Tc\( P_{CO_2 } \) monitor (TCM3; Radiometer Trading), an Et\( P_{CO_2 } \) monitor (Ultima; Datex-Ohmeda), and a nasal Et\( P_{CO_2 } \) monitor (TG-920P; Nihon Kohden). The sensor electrode of the TCM3 Tc\( P_{CO_2 } \) monitor was applied to the skin of the subject’s upper arm. A sampling tube attached to the proximal end of the tracheal tube was connected to the Ultima Et\( P_{CO_2 } \) monitor. The miniature sensor of the TG-920P nasal Et\( P_{CO_2 } \) monitor was attached to the nostril. The values obtained were compared with direct measurements of arterial \( P_{CO_2 } \)(\( Pa_{CO_2 } \)) obtained by means of an ABL700 blood gas analyzer (Radiometer Trading) in surgically treated patients. The means ± 2 SD of the differences between variables were calculated.

Results

The Tc\( P_{CO_2 } \) monitor (0.19 ± 4.8 mmHg, mean ± 2-SD) was more accurate than the Et\( P_{CO_2 } \) monitor (−4.4 ± 6.5 mmHg, mean ± 2-SD) in patients receiving artificial ventilation via an endotracheal tube and the Tc\( P_{CO_2 } \) monitor was also more accurate than the nasal Et\( P_{CO_2 } \) monitor (−6.3 ± 9.8 mmHg, bias ± 2-SD) in patients breathing spontaneously.

Conclusion

We found that the Tc\( P_{CO_2 } \) monitor was more accurate than the Et\( P_{CO_2 } \) or nasal Et\( P_{CO_2 } \) monitor in surgically treated patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nishiyama T, Nakamura S, Yamashita K. Effects of the electrode temperature of a new monitor, TCM4, on the measurement of transcutaneous oxygen and carbon dioxide tension. J Anesth. 2006;20:331–334.

    Article  PubMed  Google Scholar 

  2. Eberhard P, Gisiger PA, Gardaz JP, Spahn DR. Combining transcutaneous blood gas measurement and pulse oximetry. Anesth Analg. 2002;94:S76–S80.

    PubMed  Google Scholar 

  3. Bendjelid K, Schutz N, Stotz M, Gerard I, Suter PM, Romand JA. Transcutaneous \( P_{CO_2 } \) monitoring in critically ill adults: clinical evaluation of a new sensor. Crit Care Med. 2005;33:2203–2206.

    Article  PubMed  Google Scholar 

  4. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;I:307–310.

    Google Scholar 

  5. Kagawa S, Severinghaus JW. Errors in monitoring transcutaneous \( P_{CO_2 } \) on the ear. Crit Care Med. 2005;33:2414–2415.

    Article  PubMed  Google Scholar 

  6. Domingo Ch, Canturri E, Lujan M, Moreno A, Espuelas H, Marin A. Transcutaneous measurement of partial pressure of carbon dioxide and oxygen saturation: validation of the SenTec monitor. Arch Bronconeumol. 2006;42:246–251.

    PubMed  Google Scholar 

  7. Tingay DG, Stewart MJ, Morley CJ. Monitoring of end tidal carbon dioxide and transcutaneous carbon dioxide during neo natal transport. Arch Dis Child Fetal Neonatal Ed. 2005;90:F523–F526.

    Article  PubMed  CAS  Google Scholar 

  8. Morioka J, Yamamori S, Ozaki M. Evaluation of a compact device for capnometry of main-stream type compared with one of side-stream type in a postoperative care unit (in Japanese). Masui (Jpn J Anesthesiol). 2006;55:1496–1501.

    Google Scholar 

  9. Nishiyama T, Hanaoka K. Usefulness of a new nasal cannula with an end-tidal carbon dioxide measuring port (in Japanese). Masui (Jpn J Anesthesiol). 2003;52:424–426.

    Google Scholar 

  10. Herrejon A, Inchaurraga I, Palop J, Ponce S, Peris R, Terradez M, Blanquer R. Usefulness of transcutaneous carbon dioxide pressure monitoring to measure blood gases in adults hospitalized for respiratory disease. Arch Bronconeumol. 2006;42:225–229.

    PubMed  CAS  Google Scholar 

  11. Cuvelier A, Grigoriu B, Molano LC, Muir JF. Limitations of transcutaneous carbon dioxide measurements for assessing long-term mechanical ventilation. Chest. 2005;127:1744–1748.

    Article  PubMed  Google Scholar 

  12. Janssens JP, Laszlo A, Uldry C, Titelion V, Picaud C, Michel JP. Non-invasive (transcutaneous) monitoring of \( P_{CO_2 } \) (Tc\( P_{CO_2 } \)) in older adults. Gerontology. 2005;51:174–178.

    Article  PubMed  Google Scholar 

  13. Casati A, Squicciarini G, Malagutti G, Baciarello M, Putzu M, Fanelli A. Transcutaneous monitoring of partial pressure of carbon dioxide in the elderly patient: a prospective, clinical comparison with end-tidal monitoring. J Clin Anesth. 2006;18:436–440.

    Article  PubMed  Google Scholar 

  14. Dullenkopf A, Bernardo SD, Berger F, Fasnacht M, Gerber AC, Weiss M. Evaluation of a new combined \( Sp_{O_2 } \)/\( Ptc_{CO_2 } \) sensor in anaesthetized paediatric patients. Paediatr Anaesth. 2003;13:777–784.

    Article  PubMed  Google Scholar 

  15. Aliwalas LL, Nobel L, Nesbitt K, Fallah S, Shah V, Shah PS. Agreement of carbon dioxide levels measured by arterial, transcutaneous and end tidal methods in preterm infants < or =28 weeks gestation. J Perinatol. 2005;25:26–29.

    Article  PubMed  Google Scholar 

  16. Kagawa S, Otani N, Kamide M, Gisiger PA, Eberhard P, Severinghaus JW. Initial transcutaneous \( P_{CO_2 } \) overshoot with ear probe at 42°C. J Clin Monit. 2004;18:343–345.

    Article  Google Scholar 

  17. Lang CJ, Heckman JG. Apnea testing for the diagnosis of brain death. Acta Neurol Scand. 2005;112:358–369.

    Article  PubMed  CAS  Google Scholar 

  18. Vivien B, Marmion F, Roche S, Devilliers C, Langeron O, Coriat P, Riou B. An evaluation of transcutaneous carbon dioxide partial pressure monitoring during apnea testing in brain-dead patients. Anesthesiology. 2006;104:701–707.

    Article  PubMed  Google Scholar 

  19. Chhajed PN, Rajasekaran R, Kaegi B, Chhajed TP, Pflimlin E, Leuppi J, Tamm M. Measurement of combined oximetry and cutaneous capnography during flexible bronchoscopy. Eur Respir J. 2006;28:386–390.

    Article  PubMed  CAS  Google Scholar 

  20. Senn O, Clarenbach CF, Kaplan V, Maggiorini M, Bloch KE. Monitoring carbon dioxide tension and arterial oxygen saturation by a single earlobe sensor in patients with critical illness or sleep. Chest. 2005;128:1291–1296.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Hirabayashi, M., Fujiwara, C., Ohtani, N. et al. Transcutaneous \( P_{CO_2 } \) monitors are more accurate than end-tidal \( P_{CO_2 } \) monitors. J Anesth 23, 198–202 (2009). https://doi.org/10.1007/s00540-008-0734-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-008-0734-z

Key words

Navigation