Skip to main content

Advertisement

Log in

Ferroptosis in the colon epithelial cells as a therapeutic target for ulcerative colitis

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 23 November 2023

Abstract

Background

Ferroptosis, a type of programmed cell death triggered by oxidative stress, was suspected to play a role in ulcerative colitis. Indigo naturalis is highly effective against ulcerative colitis, but its mechanism is unclear. This study found that indigo naturalis treatment suppressed ferroptosis.

Methods

We analyzed 770 mRNA expressions of patients with ulcerative colitis. Suppression of ferroptosis by indigo naturalis treatment was shown using a cell death assay. Malondialdehyde levels and reactive oxygen species were analyzed in CaCo-2 cells treated with indigo naturalis. Glutathione metabolism was shown by metabolomic analysis. Extraction of the ingredients indigo naturalis from the rectal mucosa was performed using liquid chromatograph—mass spectrometry.

Results

Gene expression profiling showed that indigo naturalis treatment increased antioxidant genes in the mucosa of patients with ulcerative colitis. In vitro analysis showed that nuclear factor erythroid-2-related factor 2-related antioxidant gene expression was upregulated by indigo naturalis. Indigo naturalis treatment rendered cells resistant to ferroptosis. Metabolomic analysis suggested that an increase in reduced glutathione by indigo naturalis. The protein expression of CYP1A1 and GPX4 was increased in the rectum by treatment with indigo naturalis. The main ingredients of indigo naturalis, indirubin and indigo inhibited ferroptosis. Indirubin was detected in the rectal mucosa of patients with ulcerative colitis who were treated with indigo naturalis.

Conclusions

Suppression of ferroptosis by indigo naturalis in the intestinal epithelium could be therapeutic target for ulcerative colitis. The main active ingredient of indigo naturalis may be indirubin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AHR:

Aryl hydrocarbon receptor

CYP1A1:

Cytochrome P450 1a1

Cys:

Cysteine

DMSO:

Dimethyl sulfoxide

FICZ:

6-Formylindolo[3, 2-b]carbazole

GABA:

Gamma-aminobutyric acid

γ-Glu-Cys:

Gamma-glutamylcysteine

GCL:

Glutamate-cysteine ligase

GCLC:

Glutamate-cysteine ligase catalytic subunit

GCLM:

Glutamate-cysteine ligase modifier subunit

GPX4:

Glutathione peroxidase 4

GSH:

Reduced glutathione

GSSG:

Glutathione disulfide

GSTP1:

Pi-class glutathione S-transferase

Gln:

Glutamine

Glu:

Glutamic acid

Gly:

Glycine

HDAC2:

Histone deacetylase 2

H2O2 :

Hydrogen peroxide

HO-1:

Heme oxygenase-1

IN:

Indigo naturalis

LC/MS:

Liquid chromatography—mass spectrometry

MDA:

Malondialdehyde

NADPH:

Nicotinamide adenine dinucleotide phosphate

NRF2:

Nuclear factor erythroid-2-related factor 2

PRDX2:

Peroxiredoxin 2

ROS:

Reactive oxygen species

PCR:

Polymerase chain reaction

SELENBP1:

Selenium binding protein 1

SOD1:

Superoxide dismutase 1

SOD2:

Superoxide dismutase 2

SRXN:

Sulfiredoxin-1

Ser:

Serine

TCDD:

Tetrachlorodibenzo-para-dioxin

TNF:

Tumor necrosis factor

TXN:

Thioredoxin 1

TXNR:

Thioredoxin reductase 1

UC:

Ulcerative colitis

References

  1. Molodecky NA, Soon IS, Rabi DM, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142:46-54.e42 (quiz e30).

    Article  PubMed  Google Scholar 

  2. Barnes EL, Loftus EV Jr., Kappelman MD. Effects of race and ethnicity on diagnosis and management of inflammatory bowel diseases. Gastroenterology. 2021;160:677–89.

    Article  PubMed  Google Scholar 

  3. Naganuma M, Sugimoto S, Mitsuyama K, et al. Efficacy of Indigo naturalis in a multicenter randomized controlled trial of patients with ulcerative colitis. Gastroenterology. 2018;154:935–47.

    Article  PubMed  Google Scholar 

  4. Uchiyama K, Takami S, Suzuki H, et al. Efficacy and safety of short-term therapy with indigo naturalis for ulcerative colitis: an investigator-initiated multicenter double-blind clinical trial. PLoS ONE. 2020;15: e0241337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Matsuno Y, Torisu T, Umeno J, et al. One-year clinical efficacy and safety of indigo naturalis for active ulcerative colitis: a real-world prospective study. Intest Res. 2022;20:260–8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sugimoto S, Naganuma M, Kiyohara H, et al. Clinical efficacy and safety of oral Qing-Dai in patients with ulcerative colitis: a single-center open-label prospective study. Digestion. 2016;93:193–201.

    Article  CAS  PubMed  Google Scholar 

  7. Matsuno Y, Hirano A, Torisu T, et al. Short-term and long-term outcomes of indigo naturalis treatment for inflammatory bowel disease. J Gastroenterol Hepatol. 2020;35:412–7.

    Article  PubMed  Google Scholar 

  8. Saiki JP, Andreasson JO, Grimes KV, et al. Treatment-refractory ulcerative colitis responsive to indigo naturalis. BMJ Open Gastroenterol. 2021;8(1):e000813.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Naganuma M, Sugimoto S, Fukuda T, et al. Indigo naturalis is effective even in treatment-refractory patients with ulcerative colitis: a post hoc analysis from the INDIGO study. J Gastroenterol. 2020;55:169–80.

    Article  PubMed  Google Scholar 

  10. Hiraide T, Teratani T, Uemura S, et al. Pulmonary arterial hypertension caused by AhR signal activation protecting against colitis. Am J Respir Crit Care Med. 2021;203:385–8.

    Article  PubMed  Google Scholar 

  11. Naganuma M, Sugimoto S, Suzuki H, et al. Adverse events in patients with ulcerative colitis treated with indigo naturalis: a Japanese nationwide survey. J Gastroenterol. 2019;54:891–6.

    Article  PubMed  Google Scholar 

  12. Kawai S, Iijima H, Shinzaki S, et al. Indigo naturalis ameliorates murine dextran sodium sulfate-induced colitis via aryl hydrocarbon receptor activation. J Gastroenterol. 2017;52:904–19.

    Article  CAS  PubMed  Google Scholar 

  13. Bock KW. From TCDD-mediated toxicity to searches of physiologic AHR functions. Biochem Pharmacol. 2018;155:419–24.

    Article  CAS  PubMed  Google Scholar 

  14. Jena G, Trivedi PP, Sandala B. Oxidative stress in ulcerative colitis: an old concept but a new concern. Free Radic Res. 2012;46:1339–45.

    Article  CAS  PubMed  Google Scholar 

  15. Wang Z, Li S, Cao Y, et al. Oxidative stress and carbonyl lesions in ulcerative colitis and associated colorectal cancer. Oxid Med Cell Longev. 2016;2016:9875298.

    Article  PubMed  Google Scholar 

  16. Wan Y, Yang L, Jiang S, et al. Excessive apoptosis in ulcerative colitis: crosstalk between apoptosis, ROS, ER stress, and intestinal homeostasis. Inflamm Bowel Dis. 2022;28:639–48.

    Article  PubMed  Google Scholar 

  17. Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu M, Tao J, Yang Y, et al. Ferroptosis involves in intestinal epithelial cell death in ulcerative colitis. Cell Death Dis. 2020;11:86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Qi-Yue Y, Ting Z, Ya-Nan H, et al. From natural dye to herbal medicine: a systematic review of chemical constituents, pharmacological effects and clinical applications of indigo naturalis. Chin Med. 2020;15:127.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Babicki S, Arndt D, Marcu A, et al. Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res. 2016;44:W147–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gillespie M, Jassal B, Stephan R, et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 2022;50:D687–92.

    Article  CAS  PubMed  Google Scholar 

  22. Bedre R, (2020) reneshbedre/bioinfokit: Bioinformatics data analysis and visualization toolkit. Zenodo

  23. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2[-Delta Delta C (T)] method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  24. Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 2013;53:401–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wakabayashi N, Slocum SL, Skoko JJ, et al. When NRF2 talks, who’s listening? Antioxid Redox Signal. 2010;13:1649–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shaw P, Chattopadhyay A. Nrf2-ARE signaling in cellular protection: mechanism of action and the regulatory mechanisms. J Cell Physiol. 2020;235:3119–30.

    Article  CAS  PubMed  Google Scholar 

  27. Yeager RL, Reisman SA, Aleksunes LM, et al. Introducing the “TCDD-inducible AhR-Nrf2 gene battery.” Toxicol Sci. 2009;111:238–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Singh R, Chandrashekharappa S, Bodduluri SR, et al. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat Commun. 2019;10:89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tocmo R, Le B, Heun A, et al. Prenylated xanthones from mangosteen (Garcinia mangostana) activate the AhR and Nrf2 pathways and protect intestinal barrier integrity in HT-29 cells. Free Radic Biol Med. 2021;163:102–15.

    Article  CAS  PubMed  Google Scholar 

  30. Tonelli C, Chio IIC, Tuveson DA. Transcriptional regulation by Nrf2. Antioxid Redox Signal. 2018;29:1727–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lu J, Holmgren A. The thioredoxin antioxidant system. Free Radic Biol Med. 2014;66:75–87.

    Article  CAS  PubMed  Google Scholar 

  32. Loboda A, Damulewicz M, Pyza E, et al. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci. 2016;73:3221–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ramesh A, Varghese SS, Doraiswamy J, et al. Role of sulfiredoxin in systemic diseases influenced by oxidative stress. Redox Biol. 2014;2:1023–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stockwell BR. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 2022;185:2401–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death Nexus linking metabolism, redox biology, and disease. Cell. 2017;171:273–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen L, Na R, Danae McLane K, et al. Overexpression of ferroptosis defense enzyme Gpx4 retards motor neuron disease of SOD1G93A mice. Sci Rep. 2021;11:12890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shou Y, Yang L, Yang Y, et al. Inhibition of keratinocyte ferroptosis suppresses psoriatic inflammation. Cell Death Dis. 2021;12:1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kobayashi Y, Ohfuji S, Kondo K, et al. Association between dietary iron and zinc intake and development of ulcerative colitis: a case-control study in Japan. J Gastroenterol Hepatol. 2019;34:1703–10.

    Article  CAS  PubMed  Google Scholar 

  39. Millar AD, Rampton DS, Blake DR. Effects of iron and iron chelation in vitro on mucosal oxidant activity in ulcerative colitis. Aliment Pharmacol Ther. 2000;14:1163–8.

    Article  CAS  PubMed  Google Scholar 

  40. Liu JZ, van Sommeren S, Huang H, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47:979–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Safe S, Jayaraman A, Chapkin RS. Ah receptor ligands and their impacts on gut resilience: structure-activity effects. Crit Rev Toxicol. 2020;50:463–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yoshimatsu Y, Sujino T, Miyamoto K, et al. Aryl hydrocarbon receptor signals in epithelial cells govern the recruitment and location of Helios(+) Tregs in the gut. Cell Rep. 2022;39: 110773.

    Article  CAS  PubMed  Google Scholar 

  43. Rouse M, Singh NP, Nagarkatti PS, et al. Indoles mitigate the development of experimental autoimmune encephalomyelitis by induction of reciprocal differentiation of regulatory T cells and Th17 cells. Br J Pharmacol. 2013;169:1305–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Singh NP, Singh UP, Singh B, et al. Activation of aryl hydrocarbon receptor (AhR) leads to reciprocal epigenetic regulation of FoxP3 and IL-17 expression and amelioration of experimental colitis. PLoS ONE. 2011;6: e23522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Quintana FJ, Basso AS, Iglesias AH, et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature. 2008;453:65–71.

    Article  CAS  PubMed  Google Scholar 

  46. Denison MS, Faber SC. And now for something completely different: diversity in ligand-dependent activation of Ah receptor responses. Curr Opin Toxicol. 2017;2:124–31.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Miao W, Hu L, Scrivens PJ, et al. Transcriptional regulation of NF-E2 p45-related factor (NRF2) expression by the aryl hydrocarbon receptor-xenobiotic response element signaling pathway: direct cross-talk between phase I and II drug-metabolizing enzymes. J Biol Chem. 2005;280:20340–8.

    Article  CAS  PubMed  Google Scholar 

  48. Lebwohl MG, Stein Gold L, Strober B, et al. Phase 3 trials of tapinarof cream for plaque psoriasis. N Engl J Med. 2021;385:2219–29.

    Article  CAS  PubMed  Google Scholar 

  49. Lillig CH, Berndt C, Holmgren A. Glutaredoxin systems. Biochim Biophys Acta. 2008;1780:1304–17.

    Article  CAS  PubMed  Google Scholar 

  50. Forcina GC, Dixon SJ. GPX4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics. 2019;19: e1800311.

    Article  PubMed  Google Scholar 

  51. Dodson M, Castro-Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 2019;23: 101107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation. Trends Cell Biol. 2016;26:165–76.

    Article  CAS  PubMed  Google Scholar 

  53. Kagan VE, Mao G, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 2017;13:81–90.

    Article  CAS  PubMed  Google Scholar 

  54. Schreiner P, Martinho-Grueber M, Studerus D, et al. Nutrition in inflammatory bowel disease. Digestion. 2020;101(Suppl 1):120–35.

    Article  CAS  PubMed  Google Scholar 

  55. de Silva PS, Olsen A, Christensen J, et al. An association between dietary arachidonic acid, measured in adipose tissue, and ulcerative colitis. Gastroenterology. 2010;139:1912–7.

    Article  PubMed  Google Scholar 

  56. Tjonneland A, Overvad K, Bergmann MM, et al. Linoleic acid, a dietary n-6 polyunsaturated fatty acid, and the aetiology of ulcerative colitis: a nested case-control study within a European prospective cohort study. Gut. 2009;58:1606–11.

    Article  CAS  PubMed  Google Scholar 

  57. Sido B, Hack V, Hochlehnert A, et al. Impairment of intestinal glutathione synthesis in patients with inflammatory bowel disease. Gut. 1998;42:485–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ozawa K, Mori D, Hatanaka A, et al. Comparison of the anti-colitis activities of Qing Dai/Indigo naturalis constituents in mice. J Pharmacol Sci. 2020;142:148–56.

    Article  CAS  PubMed  Google Scholar 

  59. Stasiak N, Kukuła-Koch W, Głowniak K. Modern industrial and pharmacological applications of indigo dye and its derivatives–a review. Acta Pol Pharm. 2014;71:215–21.

    PubMed  Google Scholar 

  60. Xu C, Sun S, Johnson T, et al. The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain treg cell activation and suppression of antitumor immunity. Cell Rep. 2021;35: 109235.

    Article  CAS  PubMed  Google Scholar 

  61. Feuerstein JD, Isaacs KL, Schneider Y, et al. AGA clinical practice guidelines on the management of moderate to severe ulcerative colitis. Gastroenterology. 2020;158:1450–61.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ellen Knapp, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript. We appreciate the technical assistance from The Research Support Center, Research Center for Human Disease Modeling, Kyushu University Graduate School of Medical Sciences.

Funding

This work was supported by JSPS KAKENHI grants ‘[Grant-in-Aid for Scientific Research (C) JP21K06783 and Grant-in-Aid for Young Scientists (B) JP22K15668]’.

Author information

Authors and Affiliations

Authors

Contributions

AY, NI and TT conceived the idea of the study. AY, and TT were involved in the data analysis. JU, KK, SF, YF, YM, TM, and TT collected the clinical data and contributed to data interpretation. AYo, KM, KA, TK, and TT contributed to drafting of the manuscript and critical revision. All authors revised the manuscript, approved the manuscript to be published, and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Takehiro Torisu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yokote, A., Imazu, N., Umeno, J. et al. Ferroptosis in the colon epithelial cells as a therapeutic target for ulcerative colitis. J Gastroenterol 58, 868–882 (2023). https://doi.org/10.1007/s00535-023-02016-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-023-02016-4

Keywords

Navigation