Skip to main content

Advertisement

Log in

The profiling of plasma free amino acids and the relationship between serum albumin and plasma-branched chain amino acids in chronic liver disease: a single-center retrospective study

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

It is poorly understood how an imbalance of plasma-free amino acids (PFAAs) occurs and how the imbalance shows an association with the serum albumin (sAlb) level during the progression of chronic liver disease (CLDs). The aim of this study is to elucidate the profiles of PFAAs and the relationship between sAlb and PFAAs in recent patients with CLDs during the progression.

Methods

We retrospectively evaluated the 1569 data of PFAAs data obtained from 908 patients with various CLDs (CHC, CHB. alcoholic, NAFLD/NASH, PBC, AIH, PSC, and cryptogenic). In total, 1140 data of PFAAs could be analyzed in patients with CLDs dependent of their Child–Pugh (CP) score.

Results

Various imbalances in PFAAs were observed in each CLDs during the progression. Univariate and multivariate analysis revealed that among 24 PFAAs, the level of plasma-branched chain amino acids (pBCAAs) was significantly associated with the CP score, especially the sAlb score, in patients with chronic hepatitis C virus (CHC), NAFLD/NASH and PBC. The correlation coefficient values between sAlb and pBCAAs-to-Tyrosine ratio (BTR) in these patients were 0.53, 0.53 and 0.79, respectively. Interestingly, although the pBCAAs in NAFLD/NASH patients varied even when the sAlb was within the normal range, the pBCAAs tended to be low when the sAlb was below the normal range.

Conclusions

Although a decrease in the level of pBCAAs was observed during the progression regardless of the CLD etiology, the level of total pBCAAs was independently associated with the sAlb level in the PFAAs of CHC, PBC and NAFLD/NASH. The correlation between sAlb and BTR showed the highest value in PBC patients among the patients with CLDs. A decrease in pBCAAs often occurred in NASH even when the sAlb level was kept in the normal range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PFAAs:

Plasma free amino acids

pBCAAs:

Plasma branched chain amino acids

BTR:

pBCAAs-to-Tyrosine ratio

sAlb:

Serum albumin

CLDs:

Chronic liver diseases

CP:

Child–Pugh

NAFLD/NASH:

Non-alcoholic fatty liver disease/steatohepatitis

ALD:

Alcoholic liver disease

CHC:

Chronic hepatitis with hepatitis C virus

CHB:

Chronic hepatitis with hepatitis B virus

PBC:

Primary biliary cholangitis

AIH:

Autoimmune hepatitis

PSC:

Primary sclerosing cholangitis

HCC:

Hepatocellular carcinoma

References

  1. Alberino F, Gatta A, Amodio P, et al. Nutrition and survival in patients with liver cirrhosis. Nutrition. 2001;17:445–50.

    Article  PubMed  CAS  Google Scholar 

  2. Fischer JE, Rosen HM, Ebeid AM, et al. The effect of normalization of plasma amino acids on hepatic encephalopathy in man. Surgery. 1976;80:77–91.

    PubMed  CAS  Google Scholar 

  3. Morgan MY, Marshall AW, Milsom JP, et al. Plasma amino-acid patterns in liver disease. Gut. 1982;23:362–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Herman MA, She P, Peroni OD, et al. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J Biol Chem. 2010;285:11348–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Shimomura Y, Murakami T, Nakai N, et al. Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise. J Nutr. 2004;134:1583S–7S.

    Article  PubMed  CAS  Google Scholar 

  6. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149:274–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Lu C, Thompson CB. Metabolic regulation of epigenetics. Cell Metab. 2012;16:9–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Kaelin WGJ, McKnight SL. Influence of metabolism on epigenetics and disease. Cell. 2013;153:56–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Wolfson RL, Chantranupong L, Saxton RA, et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science. 2016;351:43–8.

    Article  PubMed  CAS  Google Scholar 

  10. Chantranupong L, Scaria SM, Saxton RA, et al. The CASTOR Proteins Are Arginine Sensors for the mTORC1 Pathway. Cell. 2016;165:153–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Matsumura T, Morinaga Y, Fujitani S, et al. Oral administration of branched-chain amino acids activates the mTOR signal in cirrhotic rat liver. Hepatol Res. 2005;33:27–32.

    Article  PubMed  CAS  Google Scholar 

  12. Ijichi C, Matsumura T, Tsuji T, et al. Branched-chain amino acids promote albumin synthesis in rat primary hepatocytes through the mTOR signal transduction system. Biochem Biophys Res Commun. 2003;303:59–64.

    Article  PubMed  CAS  Google Scholar 

  13. Harper AE, Miller RH, Block KP. Branched-chain amino acid metabolism. Annu Rev Nutr. 1984;4:409–54.

    Article  PubMed  CAS  Google Scholar 

  14. Marchesini G, Bianchi G, Merli M, et al. Nutritional supplementation with branched-chain amino acids in advanced cirrhosis: a double-blind, randomized trial. Gastroenterology. 2003;124:1792–801.

    Article  PubMed  CAS  Google Scholar 

  15. Fukui H, Saito H, Ueno Y, et al. Evidence-based clinical practice guidelines for liver cirrhosis 2015. J. Gastroenterol. 2016;51:629–50.

    Article  PubMed  CAS  Google Scholar 

  16. Gluud LL, Dam G, Borre M, et al. Oral branched-chain amino acids have a beneficial effect on manifestations of hepatic encephalopathy in a systematic review with meta-analyses of randomized controlled trials. J Nutr. 2013;143:1263–8.

    Article  PubMed  CAS  Google Scholar 

  17. Amodio P, Bemeur C, Butterworth R, et al. The nutritional management of hepatic encephalopathy in patients with cirrhosis: International Society for Hepatic Encephalopathy and Nitrogen Metabolism Consensus. Hepatology. 2013;58:325–36.

    Article  PubMed  CAS  Google Scholar 

  18. Nakaya Y, Okita K, Suzuki K, et al. BCAA-enriched snack improves nutritional state of cirrhosis branched-chain amino acid. Nutrition. 2007;23:113–20.

    Article  PubMed  CAS  Google Scholar 

  19. Muto Y, Sato S, Watanabe A, et al. Effects of oral branched-chain amino acid granules on event-free survival in patients with liver cirrhosis. Clin Gastroenterol Hepatol. 2005;3:705–13.

    Article  PubMed  CAS  Google Scholar 

  20. Plauth M, Cabre E, Riggio O, et al. ESPEN Guidelines on Enteral Nutrition: Liver disease. Clin Nutr. 2006;25:285–94.

    Article  PubMed  CAS  Google Scholar 

  21. Kitajima Y, Takahashi H, Akiyama T, et al. Supplementation with branched-chain amino acids ameliorates hypoalbuminemia, prevents sarcopenia, and reduces fat accumulation in the skeletal muscles of patients with liver cirrhosis. J. Gastroenterol. 2017. https://doi.org/10.1007/s00535-017-1370-x.

    Article  PubMed  Google Scholar 

  22. Koya S, Kawaguchi T, Hashida R, et al. Effects of in-hospital exercise on liver function, physical ability, and muscle mass during treatment of hepatoma in patients with chronic liver disease. Hepatol Res. 2017;47:E22–34.

    Article  PubMed  CAS  Google Scholar 

  23. Muto Y, Sato S, Watanabe A, et al. Overweight and obesity increase the risk for liver cancer in patients with liver cirrhosis and long-term oral supplementation with branched-chain amino acid granules inhibits liver carcinogenesis in heavier patients with liver cirrhosis. Hepatol Res. 2006;35:204–14.

    PubMed  CAS  Google Scholar 

  24. Kakazu E, Kondo Y, Kogure T, et al. Supplementation of branched-chain amino acids maintains the serum albumin level in the course of hepatocellular carcinoma recurrence. Tohoku J Exp Med. 2013;230:191–6.

    Article  PubMed  CAS  Google Scholar 

  25. Younossi ZM, Koenig AB, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73–84.

    Article  PubMed  Google Scholar 

  26. Hossain P, Kawar B, El Nahas M. Obesity and diabetes in the developing world–a growing challenge. N Engl J Med. 2007;356:213–5.

    Article  PubMed  CAS  Google Scholar 

  27. Kakazu E, Kondo Y, Ninomiya M, et al. The influence of pioglitazone on the plasma amino acid profile in patients with nonalcoholic steatohepatitis (NASH). Hepatol Int. 2013;7:577–85.

    Article  PubMed  Google Scholar 

  28. Jang C, Oh SF, Wada S, et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat Med. 2016;22:421–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Terrlink T, van Leeuwen PA, Houdijk A. Plasma amino acids determined by liquid chromatography within 17 minutes. Clin Chem. 1994;40:245–9.

    PubMed  CAS  Google Scholar 

  30. Suzuki K, Suzuki K, Koizumi K, et al. Measurement of serum branched-chain amino acids to tyrosine ratio level is useful in a prediction of a change of serum albumin level in chronic liver disease. Hepatol Res. 2008;38:267–72.

    Article  PubMed  CAS  Google Scholar 

  31. Polge A, Bancel E, Bellet H, et al. Plasma amino acid concentrations in elderly patients with protein energy malnutrition. Age Ageing. 1997;26:457–62.

    Article  PubMed  CAS  Google Scholar 

  32. Dasarathy S, Merli M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol. 2016;65:1232–44.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hanai T, Shiraki M, Watanabe S, et al. Sarcopenia predicts minimal hepatic encephalopathy in patients with liver cirrhosis. Hepatol Res Netherlands. 2017;47:1359–1367.

    Article  CAS  Google Scholar 

  34. Falany CN, Johnson MR, Barnes S, et al. Glycine and taurine conjugation of bile acids by a single enzyme. Molecular cloning and expression of human liver bile acid CoA: amino acid N-acyltransferase. J Biol Chem. 1994;269:19375–9.

    PubMed  CAS  Google Scholar 

  35. Parks DJ, Blanchard SG, Bledsoe RK, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science. 1999;284:1365–8.

    Article  PubMed  CAS  Google Scholar 

  36. Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9:311–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Lake AD, Novak P, Shipkova P, et al. Branched chain amino acid metabolism profiles in progressive human nonalcoholic fatty liver disease. Amino Acids. 2015;47:603–15.

    Article  PubMed  CAS  Google Scholar 

  38. Goffredo M, Santoro N, Trico D, et al. A branched-chain amino acid-related metabolic signature characterizes obese adolescents with non-alcoholic fatty liver disease. Nutrients. 2017;9:642.

    Article  PubMed Central  Google Scholar 

  39. Gaggini M, Carli F, Rosso C, et al. Altered amino acid concentrations in NAFLD: impact of obesity and insulin resistance. Hepatology. 2017;67:145.

    Article  PubMed  CAS  Google Scholar 

  40. Kawanaka M, Nishino K, Oka T, et al. Tyrosine levels are associated with insulin resistance in patients with nonalcoholic fatty liver disease. Hepat Med New Zeal. 2015;7:29–35.

    Google Scholar 

Download references

Acknowledgements

This study was supported by a Grant-in-aid from Ministry of Education, Culture, Sports, Science, and Technology of Japan to EK (16K09336), and Grants from Ministry of Health, Labor, and Welfare of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Kakazu.

Ethics declarations

Conflict of interest

The authors have no financial conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2114 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sano, A., Kakazu, E., Morosawa, T. et al. The profiling of plasma free amino acids and the relationship between serum albumin and plasma-branched chain amino acids in chronic liver disease: a single-center retrospective study. J Gastroenterol 53, 978–988 (2018). https://doi.org/10.1007/s00535-018-1435-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-018-1435-5

Keywords

Navigation